Advertisement

Journal of Applied Spectroscopy

, Volume 80, Issue 6, pp 954–956 | Cite as

Synthesis and Physical Properties of Nd:YVO4 Nanopowders prepared by a Chemical Method

  • M. H. Maleki
  • S. Alhooie
  • H. R. Dizaji
  • A. Asgari
Article

Single-phase Nd-doped YVO4 nanopowders were synthesized by a chemical method. The powders were heated at 1200°C for 1 h to obtain good crystallinity with better luminescence. Annealing temperature affects the crystal structure of the nanopowders. X-ray diffraction (XRD) revealed that a preferred crystallographic orientation is [200]. Measurements showed that the nanoparticles had an average size of 62.5 nm. A scanning electron microscope (SEM) image of the nanopowders indicated the formation of uniform and nearly spherical Nd:YVO4 particles. The transmittance spectrum of the nanopowders showed a broad absorption band around 808 nm. Photoluminescence studies on the annealed powders revealed their luminescence properties.

Keywords

Nd:YVO4 nanopowders luminescence properties crystallinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. O’Connor, Appl. Phys. Lett., 9, No. 11, 407–410 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    A. W. Tucher, M. Birnbaun, C. L. Fincher, L. G. Deshazer, J. Appl. Phys., 47, No. 1, 232–235 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    A. W. Tucher, M. Birebaun, C. L. Fincher, J. W. Erler, J. Appl. Phys., 48, No. 12, 4907–4911 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    R. A. Fields, M. Birnbaun, C. L. Fincher, Appl. Phys. Lett., 51, No. 23, 1885–1887 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    G. C. Bowkett, Nd:YVO4 Microchip Lasers and Amplifiers, PhD thesis, Victoria Univ. of Technol. (1999).Google Scholar
  6. 6.
    M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. J. Zhang, Y. C. Han, Chem. Mater., 14, 2224 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Ekambaram, K. C. Patil, J. Alloys Compd., 217, No. 1, 104–107 (1995).CrossRefGoogle Scholar
  8. 8.
    L. D. Sun, Y. X. Zhang, J. Zhang, C. H. Yan, C. S. Liao, Y. Q. Lu, Solid State Commun., 124, No. 1, 35–38 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    H. S. Lai, B. J. Chen, W. Xu, X. J. Wang, Y. M. Yang, Q. Y. Meng, J. Alloys Compd., 395, No. 1, 181–184 (2005).CrossRefGoogle Scholar
  10. 10.
    H. Arnaud, G. Thierry, Chem. Mater., 12, 1090 (2002).CrossRefGoogle Scholar
  11. 11.
    H. Wu, H. Xu, Q. Su, T. Chen, M. Wu, J. Mater. Chem., 13, No. 5, 1223–1228 (2003).CrossRefGoogle Scholar
  12. 12.
    A. Huignard, T. Gacoin, J. P. Boilot, Chem. Mater., 12, No. 4, 1090–1094 (2000).CrossRefGoogle Scholar
  13. 13.
    L. M. Chen, Y. N. Liu, K. L. Huang, Mater. Res. Bull., 41, No. 1, 158–166 (2006).CrossRefMathSciNetGoogle Scholar
  14. 14.
    R. C. Ropp, B. Carroll, J. Inorg. Nucl. Chem., 39, No. 8, 1303–1307 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. H. Maleki
    • 1
  • S. Alhooie
    • 1
  • H. R. Dizaji
    • 2
  • A. Asgari
    • 3
  1. 1.Laser and Optics Research SchoolTehranIran
  2. 2.Semnan UniversityTehranIran
  3. 3.Amirkabir University of TechnologyTehranIran

Personalised recommendations