Advertisement

Journal of Applied Spectroscopy

, Volume 80, Issue 6, pp 855–860 | Cite as

Structural and Luminescent Properties of Sn-Doped SiO2 Layers

  • F. F. Komarov
  • L. A. Vlasukova
  • O. V. Milchanin
  • M. A. Makhavikou
  • I. N. Parkhomenko
  • E. Wendler
  • W. Wesch
  • A. V. Mudryi
  • G. A. Ismailova
Article

The formation of tin nanocrystallites in a SiO2:Sn matrix using a high-dose implantation technique followed by high-temperature processing was studied. Structural phase transformations were studied by plan-view transmission electron microscopy. Optical properties of the implanted samples were investigated by photoluminescence. It was shown that annealing of the implanted SiO2 layers formed nanoprecipitates of β-Sn and caused the appearance of regions enriched in SnO2. Photoluminescence spectra of implanted and annealed samples exhibited intense emission in photon energy range 1.3–3.6 eV that was attributed to oxygen-deficit centers created in the SiO2:Sn matrix and at the nanocluster/SiO2 interface.

Keywords

SiO2:Si structure Sn ion implantation high-temperature processing nanoclusters visible luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Tiwari, F. Rana, H. Hanati, A. Harstein, E. Crabbe, and K. Chan, Appl. Phys. Lett., 68, 1377–1379 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    H. Lalic and J. Linros, J. Lumin., 80, 263–267 (1999).CrossRefGoogle Scholar
  3. 3.
    W. Chen and H. Ahmed, J. Vac. Sci. Technol., B, 15, 1402–1405 (1997).CrossRefGoogle Scholar
  4. 4.
    E. Kapetanakis, P. Normand, D. Tsoukalas, K. Beltsiois, J. Stoeemenos, S. Zhang, and J. Van der Berg, Appl. Phys. Lett., 77, 3450–3452 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Trans. Electron. Devices, 49, 1606–1613 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Trans. Electron. Devices, 49, 1614–1622 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    M. Asif Khan, M. Shatalov, H. P. Maruska, H. V. Wang, and E. Kuotskis, Jpn. J. Appl. Phys., Part 1, 44, 7191–7206 (2005).CrossRefGoogle Scholar
  8. 8.
    H. S. Yang, S. Y. Han, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, F. Ren, A. Osinski, J. W. Dong, and B. Hertog, Jpn. J. Appl. Phys., Part 1, 44, 7296–7300 (2005).CrossRefGoogle Scholar
  9. 9.
    A. Nalajima, H. Nalao, H. Ueno, T. Fulatsigu, and N. Yokoyama, J. Vac. Sci. Technol., B, 17, 1317–1322 (1999).CrossRefGoogle Scholar
  10. 10.
    L. Rebohle, J. von Borany, H. Fröb, and W. Scorupa, Appl. Phys. B: Lasers Opt., 71, 131–151 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    S. Spiga, R. Mantovan, M. Fanciuli, N. Ferreti, F. Boscherini, F. D'Acapito, B. Schmidt, R. Grötzschell, and A. Mücklich, Phys. Rev. B: Condens. Matter Mater. Phys., 68, 205419 (1–10) (2003).ADSCrossRefGoogle Scholar
  12. 12.
    M. Tagliente, V. Bello, G. Pellegrini, G. Mattei, P. Mazzoldi, and M. Massaro, J. Appl. Phys., 106, 104304 (1–5) (2009).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Tagliente, V. Bello, G. Pellegrini, G. Mattei, P. Mazzoldi, M. Massaro, and D. Carbone, Nucl. Instrum. Methods Phys. Res., Sect. B, 268, 3063–3065 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    A. F. Zatsepin, E. A. Buntov, V. S. Kortov, V. A. Pustovarov, H.-J. Fitting, B. Schmidt, and N. V. Gavrilov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Techn., 6, 668–672 (2012).CrossRefGoogle Scholar
  15. 15.
    S. Spiga, M. Fanciulli, N. Ferretti, F. Boscherini, F. D'Acapito, G. Ciatto, and B. Schmidt, Nucl. Instrum. Methods Phys. Res., Sect. B, 200, 171–177 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, New York (1985).Google Scholar
  17. 17.
    M. M. Karim and D. Holland, Phys. Chem. Glasses, 36, 206–210 (1995).Google Scholar
  18. 18.
    J. F. Bent, A. C. Hannon, D. Holland, and M. M. Karim, J. Non-Cryst. Solids, 232234, 300–308 (1998).CrossRefGoogle Scholar
  19. 19.
    M. B. Volf, Chemical Approach to Glass, Elsevier, Oxford (1984).Google Scholar
  20. 20.
    A. N. Mikhailov, Luminescent Properties of Systems Based on Oxides with Ion-Synthesized Silicon Nanocrystals [in Russian], Candidate Dissertation in Physical-Mathematical Sciences, Nizhnii Novgorod (2006).Google Scholar
  21. 21.
    Salh Roushdey, in: Crystalline Silicon, Properties and Uses, Rijeka In Tech, Croatia (2011), pp. 135–172.Google Scholar
  22. 22.
    H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Mutta, and H. Kawazoe, Phys. Rev. B: Condens. Matter Mater. Phys., 46, 11445–11451 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • F. F. Komarov
    • 1
  • L. A. Vlasukova
    • 1
  • O. V. Milchanin
    • 2
  • M. A. Makhavikou
    • 2
  • I. N. Parkhomenko
    • 1
  • E. Wendler
    • 3
  • W. Wesch
    • 3
  • A. V. Mudryi
    • 4
  • G. A. Ismailova
    • 5
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.A. N. Sevchenko Institute of Applied Physical ProblemsBelarusian State UniversityMinskBelarus
  3. 3.Friedrich-Schiller UniversitatJenaGermany
  4. 4.Scientific and Practical Material Research CenterNational Academy of Sciences of BelarusMinskBelarus
  5. 5.Al-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations