Journal of Applied Spectroscopy

, Volume 80, Issue 6, pp 813–823 | Cite as

Water-Soluble Pyridyl Porphyrins with Amphiphilic N-Substituents: Fluorescent Properties and Photosensitized Formation of Singlet Oxygen

  • A. S. Stasheuski
  • V. A. Galievsky
  • V. N. Knyukshto
  • R. K. Ghazaryan
  • A. G. Gyulkhandanyan
  • G. V. Gyulkhandanyan
  • B. M. Dzhagarov

Spectral and photophysical characteristics of a number of free bases and zinc complexes of cationic porphyrins that were synthesized in order to modify their specific interaction with biomolecules were studied. It was shown that the electronic excitation-energy intramolecular relaxation rate constants (fluorescent k f and non-fluorescent knf for the photosensitizer S 1 → S 0 transition and also intersystem crossing rate constant kisc for the S 1 → T 1 transition) decreased by ~1.5 times for [3-pyridyl]porphyrin free bases as compared with the [4-pyridyl]-isomers. A chargetransfer state for both the free bases and the Zn-porphyrins impacted directly the shape of the fluorescence spectra and contributed equally to relaxation through the S 1 → S 0, S 1 ~ ~ > S 0, and S 1 ~ ~ > T 1 paths. All studied porphyrins exhibited high quantum yields for singlet-oxygen formation (~80 %) with an intrinsic fluorescence level of several percent. Such photophysical parameters indicated that the examined water-soluble porphyrins were promising compounds for both application in targeted photodynamic therapy and fabrication of luminescent sensors.


cationic porphyrins quantum yield kinetic fluorescence spectroscopy triplet state photosensitizer singlet oxygen charge-transfer state (CT-state) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, Chem. Soc. Rev., 40, 340–362 (2011).CrossRefGoogle Scholar
  2. 2.
    K. Lang, J. Mosinger, and D. M. Wagnerova, Coord. Chem. Rev., 248, 321–350 (2004).CrossRefGoogle Scholar
  3. 3.
    N. A. Rakow and K. S. Suslick, Nature, 406, 710–713 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    K. Kano, T. Nakajima, T. Takei, and S. Hashimoto, Bull. Chem. Soc. Jpn., 60, 1281–1287 (1987).CrossRefGoogle Scholar
  5. 5.
    V. S. Chirvony, V. A. Galievsky, N. N. Kruk, B. M. Dzhagarov, and P.-Y. Turpin, J. Photochem. Photobiol., B, 40, 154–162 (1997).CrossRefGoogle Scholar
  6. 6.
    N. N. Kruk, B. M. Dzhagarov, V. A. Galievsky, V. S. Chirvony, and P.-Y. Turpin, J. Photochem. Photobiol., B, 42, 181–190 (1998).Google Scholar
  7. 7.
    V. S. Chirvony, V. A. Galievsky, S. N. Terekhov, B. M. Dzhagarov, V. V. Ermolenkov, and P.-Y. Turpin, Biospectroscopy, 5, No. 5, 302–312 (1999).CrossRefGoogle Scholar
  8. 8.
    J. H. Lee and J.-W. Park, Free Radical Biol. Med., 37, No. 2, 272–283 (2004).CrossRefGoogle Scholar
  9. 9.
    I. Spasojević, Y. Chen, T. J. Noel, Y. Yu, M. P. Cole, L. Zhang, Y. Zhao, D. K. St. Clair, and I. Batinić-Haberle, Free Radical Biol. Med., 42, 1193–1200 (2007).Google Scholar
  10. 10.
    S. Tada-Oikawa, S. Oikawa, J. Hirayama, K. Hirakawa, and S. Kawanishi, Photochem. Photobiol. 85, 1391–1399 (2009).CrossRefGoogle Scholar
  11. 11.
    M. Faudale, S. Cogoi, and L. E. Xodo, Chem. Commun., 48, 874–876 (2012).CrossRefGoogle Scholar
  12. 12.
    G. V. Gyulkhandanyan, S. S. Ghambaryan, G. V. Amelyan, R. K. Ghazaryan, F. H. Arsenyan, and A. G. Gyulkhandanyan, Proc. SPIE Int. Soc. Opt. Eng., 6139, 613911 (1–7) (2006).Google Scholar
  13. 13.
    G. V. Gyulkhandanyan, M. H. Paronyan, A. S. Hovsepyan, R. K. Ghazaryan, A. G. Tovmasyan, A. G. Gyulkhandanyan, A. G. Gyulkhandanyan, and G. V. Amelyan, Proc. SPIE Int. Soc. Opt. Eng., 7380, 738031 (1–7) (2009).Google Scholar
  14. 14.
    O. A. Kovaleva, V. B. Tsvetkov, A. K. Shchyolkina, O. F. Borisova, V. A. Ol'shevskaya, A. V. Makarenkov, A. S. Semeikin, A. A. Shtil, and D. N. Kaluzhny, Eur. Biophys. J., 41, 723–732 (2012).Google Scholar
  15. 15.
    A. Tovmasyan, L. Sahakyan, G. Gasparyan, N. Babayan, G. Gyulkhandanyan, and R. Ghazaryan, J. Biomol. Struct. Dyn., 24, No. 6, 682–683 (2007).Google Scholar
  16. 16.
    R. K. Ghazaryan, L. A. Sahakyan, A. G. Tovmasyan, and A. Dz. Hambardzumyan, New Armen. Med. J., 2, No. 4, 40-48 (2008).Google Scholar
  17. 17.
    A. G. Tovmasyan, L. A. Sahakyan, N. S. Babayan, G. H. Gasparyan, K. S. Margaryan, G. G. Hovhannisyan, R. M. Aroutiounyan, and R. K. Ghazaryan, J. Porphyrins Phthalocyanines, 12, 1100–1110 (2008).CrossRefGoogle Scholar
  18. 18.
    Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H, Pergamon Press, Oxford (1979);
  19. 19.
    E. I. Zen'kevich, E. I. Sagun, V. N. Knyukshto, A. M. Shul'ga, A. F. Mironov, O. A. Efremova, R. Bonnet, and M. Kassem, Zh. Prikl. Spektrosk., 63, No. 4, 599–612 (1996).Google Scholar
  20. 20.
    A. S. Stashevski, V. A. Galievsky, and B. M. Dzhagarov, Prib. Metody Izmer. , No. 1 (2), 25–31 (2011).Google Scholar
  21. 21.
    S. V. Lepeshkevich, A. S. Stasheuski, M. V. Parkhats, V. A. Galievsky, and B. M. Dzhagharov, J. Photochem. Photobiol., B, 120, 130–141 (2013).Google Scholar
  22. 22.
    J. G. Parker and W. D. Stanbro, Prog. Clin. Biol. Res., 170, 259–284 (1984).Google Scholar
  23. 23.
    J. Baier, T. Fuss, C. Pöllmann, C. Wiesmann, K. Pindl, R. Engl, D. Baumer, M. Maier, M. Landthaler, and W. Bäumler, J. Photochem. Photobiol., B, 87, 163–173 (2007).Google Scholar
  24. 24.
    B. M. Dzhagarov, K. I. Salokhiddinov, and S. L. Bondarev, Biofizika, 23, No. 5, 762–767 (1978).Google Scholar
  25. 25.
    S. Nonell and S. E. Braslavsky, in: Singlet Oxygen, UV-A, and Ozone. Methods in Enzymology, L. Packer and H. Sies (Eds.), Vol. 319, Academic Press, San Diego (2000), pp. 37–49.Google Scholar
  26. 26.
    R. Schmidt and C. Taneilan, J. Phys. Chem. A, 104, 3177–3180 (2000).Google Scholar
  27. 27.
    P. K. Frederiksen, S. P. McIlroy, C. B. Nielsen, L. Nikolajsen, E. Skovsen, M. Jörgensen, K. V. Mikkelsen, and P. R. Ogilby, J. Am. Chem. Soc., 127, 255–269 (2005).CrossRefGoogle Scholar
  28. 28.
    M. Gouterman, The Porphyrins, D. Dolphin (Ed.), Vol. III, Academic Press, New York, (1978), Chap. 1, pp. 1–165.Google Scholar
  29. 29.
    K. Kalyanasundaram, Inorg. Chem., 23, 2453–2459 (1984).CrossRefGoogle Scholar
  30. 30.
    B. M. Dzhagarov, G. P. Gurinovich, V. E. Novichenkov, K. I. Salokhiddinov, A. M. Shul'ga, and V. A. Ganzha, Khim. Fiz., 6, No. 8, 1069–1078 (1987).Google Scholar
  31. 31.
    A. A. Krasnovskii, Progress in Science and Technology. Current Problems in Laser Physics [in Russian], Vol. 3, VINITI, Moscow (1990).Google Scholar
  32. 32.
    J. R. Lakowicz and G. Weber, Biochemistry, 12, No. 21, 4161–4170 (1973).CrossRefGoogle Scholar
  33. 33.
    B. P. Nikolskii (Ed.), Handbook of Chemistry. Vol. 4. Analytical Chemistry, Spectral Analysis, Refractive Indices [in Russian], Khimiya, Leningrad (1967).Google Scholar
  34. 34.
    F. J. Vergeldt, R. B. M. Koehorst, A. V. Hoek, and T. J. Schaafsma, J. Phys. Chem., 99, No. 13, 4397–4405 (1995).CrossRefGoogle Scholar
  35. 35.
    G. Heimel, M. Daghofer, J. Gierschner, E. J. W. List, A. C. Grimsdale, K. Müllen, D. Beljonne, J.-L. Brédas, and E. Zojer, J. Chem. Phys., 122, 054501-12 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    C. Wohlfahrt, Pure Liquids: Data, O. Madelung (Ed.), The Landolt-Bornstein Database, Vol. 6, Springer Materials, (1991), p. 32.Google Scholar
  37. 37.
    M. V. Parkhots, V. A. Galievsky, A. S. Stashevski, T. V. Trukhacheva, and B. M. Dzhagarov, Opt. Spektrosk., 107, No. 6, 1026–1032 (2009) [Opt. Spectrosc., 107, No. 6, 974–980 (2009)].Google Scholar
  38. 38.
    O. L. J. Gijzeman, F. Kaufman, and G. Porter, J. Chem. Soc. Faraday Trans. 2, 69, 708–720 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. S. Stasheuski
    • 1
  • V. A. Galievsky
    • 1
  • V. N. Knyukshto
    • 1
  • R. K. Ghazaryan
  • A. G. Gyulkhandanyan
  • G. V. Gyulkhandanyan
  • B. M. Dzhagarov
    • 1
  1. 1.Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations