Journal of Applied Spectroscopy

, Volume 81, Issue 5, pp 885–892 | Cite as

Synthesis of La2(1–x)(MoO4)3:RE2x (RE = Eu, Tb) Phosphor Powders via a Sol-Gel Combustion Process and Their Photoluminescent Properties

  • N. Li
  • J. Zhou
  • Y. Sun
English-Language Articles

Powder phosphors of La2(1–x)(MoO4)3:RE2x , RE = Eu3+ or Tb3+, were prepared by sol-gel combustion reactions with calcination temperatures of 600–900°C. Their reaction process, crystal structures, morphologies, and optical properties were characterized by differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, respectively. Our results reveal that all of these phosphors adopted the tetragonal crystal structure. The obtained La2(1–x) (MoO4)3:Eu2x phosphors exhibit a notable emission in the red light range which can be assigned to the 5D07F2 transition of Eu3+ upon excitation at 459 nm. When the phosphors were irradiated by 277 nm light, they showed predominant green emission (5D47F5) at 540 nm. The highest emission of the phosphors can be achieved by adjusting the doping concentration of Eu3+ at x =0.25 or Tb3+ at x =0.09.


photoluminescence phosphor sol-gel combustion rare earth molybdates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Jüstel, N. Hans, and R. Cees, Angew. Chem. Int. Ed., 37, 3084–3103 (1998).CrossRefGoogle Scholar
  2. 2.
    C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, Adv. Funct. Mater., 13, 511–516 (2003) .CrossRefGoogle Scholar
  3. 3.
    R. N. Bhargava, D. Gallagher, and T. Welker, J. Lumin., 60, 275–280 (1994).CrossRefGoogle Scholar
  4. 4.
    M. Bredol, U. Kynast, and C. Ronda, Adv. Mater., 3, 361–367 (1991).CrossRefGoogle Scholar
  5. 5.
    A. J. Kenyon, Prog. Quantum Electron., 26, 225–284 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    X. X. Luo and W. H. Cao, Mater. Lett., 61, 3696–3700 (2007).CrossRefGoogle Scholar
  7. 7.
    K. Dahmouche, C. V. Santilli, S. H. Pulcinelli, R. S. Ferreira, L. D. Carlos, V. de Zea Bermudez, and A. F. Craievich, J. Sol-Gel Sci. Technol., 37, 99–104 (2006).CrossRefGoogle Scholar
  8. 8.
    R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, J. Am. Ceram. Soc., 85, 1229–1234 (2002).CrossRefGoogle Scholar
  9. 9.
    P. Maestro and D. Huguenin, J. Alloys Compd., 225, 520–528 (1995).CrossRefGoogle Scholar
  10. 10.
    E. T. Keve, S. C. Abrahams, and J. L. Bernstein, J. Chem. Phys., 54, 3185–3194 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    J. R. Barkley and W. Jeitschko, J. Appl. Phys., 44, 938–944 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, Phys. Status Solidi A, 153, 281–285 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, and X. Li, J. Appl. Phys., 109, 053511–053511 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    G. Yi, B. Sun, F. Yang, D. Chen, Y. Zhou, and J. Cheng, Chem. Mater., 14, 2910–2914 (2002).CrossRefGoogle Scholar
  15. 15.
    Z. Xu, C. Li, G. Li, R. Chai, C. Peng, D. Yang, and J. Lin, J. Phys. Chem. C, 114, 2573–2582 (2010).CrossRefGoogle Scholar
  16. 16.
    D. Logvinovich, A. Arakcheeva, P. Pattison, S. Eliseeva, P. Tomes, I. Marozau, and G. Chapuis, Inorg. Chem., 49, 1587–1594 (2010).CrossRefGoogle Scholar
  17. 17.
    P. S. Dutta and A. Khanna, ECS J. Solid State Sci. Technol., 2, R3153–R3167 (2013).CrossRefGoogle Scholar
  18. 18.
    M. A. Aegerter, R. Almeida, A. Soutar, K. Tadanaga, H. Yang, and T. Watanabe, J. Sol-Gel Sci. Techn., 47, 203–236 (2008).CrossRefGoogle Scholar
  19. 19.
    Y. Tian, W. H. Cao, X. X. Luo, and Y. Fu, J. Alloys Compd., 433, 313–317 (2007).CrossRefGoogle Scholar
  20. 20.
    A. Atkinson, D. L. Segal, J. Sol-Gel Sci. Technol., 13, 133–139 (1998).CrossRefGoogle Scholar
  21. 21.
    A. Potdevin, G. Chadeyron, D. Boyer, and R. Mahiou, J. Sol-Gel Sci. Technol., 39, 275–284 (2006).CrossRefGoogle Scholar
  22. 22.
    H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, and G. Ju, J. Sol-Gel Sci. Technol., 62, 227–233 (2012).CrossRefGoogle Scholar
  23. 23.
    D. Giron, J. Therm. Anal. Calorim., 68, 335–357 (2002).CrossRefGoogle Scholar
  24. 24.
    J. Zhang and L. Gao, J. Solid State Chem., 177, 1425–1430 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    J. Li, Y. Pan, C. Xiang, Q. Ge, and J. Guo, Ceram. Int., 32, 587–591 (2006).CrossRefGoogle Scholar
  26. 26.
    H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, and S. S. Yi, Inorg. Chem., 50, 12522–12530 (2011).CrossRefGoogle Scholar
  27. 27.
    F. Lei and B. Yan, J. Solid State Chem., 181, 855–862 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    M. Yu, J. Lin, and J. Fang, Chem. Mater., 17, 1783–1791 (2005).CrossRefGoogle Scholar
  29. 29.
    R. X. Yan and Y. D. Li, Adv. Funct. Mater., 15, 763–770 (2005).CrossRefGoogle Scholar
  30. 30.
    K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, Electrochem. Solid-State Lett., 9, H22–H25 (2006).CrossRefGoogle Scholar
  31. 31.
    R. J. Xie and N. Hirosaki, Sci. Technol. Adv. Mater., 8, 588–600 (2007).CrossRefGoogle Scholar
  32. 32.
    R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, Chem. Mater., 18, 5578–5583 (2006).CrossRefGoogle Scholar
  33. 33.
    X. Qiao, Q. Luo, X. Fan, and M. Wang, J. Rare Earths, 26, 883–888 (2008).CrossRefGoogle Scholar
  34. 34.
    G. Seeta Rama Raju, H. C. Jung, J. Y. Park, B. K. Moon, R. Balakrishnaiah, J. H. Jeong, and J. H. Kim, Sensor. Actuat. B: Chem., 146, 395–402 (2010).CrossRefGoogle Scholar
  35. 35.
    Y. Shuai, N. T. Tran, and F. G. Shi, IEEE Photonic. Technol. Lett., 23, 552–554 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    S. Fujita, Y. Umayahara, and S. Tanabe, J. Ceram. Soc. Jpn., 118, 128–131 (2010).CrossRefGoogle Scholar
  37. 37.
    Y. C. Kang, I. W. Lenggoro, S. B. Park, and K. Okuyama, Mater. Res. Bull., 35, 789–798 (2000).CrossRefGoogle Scholar
  38. 38.
    C. T. Lin, W. Böttcher, M. Chou, C. Creutz, and N. Sutin, J. Am. Chem. Soc., 98, 6536–6544 (1976).CrossRefGoogle Scholar
  39. 39.
    W. L. Feng, M. F. Zhao, J. Y. Xue, and X. J. Tian, J. Alloys Compd., 521, 146–149 (2012).CrossRefGoogle Scholar
  40. 40.
    A. Podhorodecki, M. Banski, J. Misiewicz, J. Serafińczuk, and N. V. Gaponenko, J. Electrochem. Soc., 157, H628–H632 (2010).CrossRefGoogle Scholar
  41. 41.
    P. K. Sharma, R. K. Dutta, and A. C. Pandey, J. Nanopart. Res., 14, 1–9 (2012).Google Scholar
  42. 42.
    F. Angiuli, E. Cavalli, and A. Belletti, J. Solid State Chem., 192, 289–295 (2012).ADSCrossRefGoogle Scholar
  43. 43.
    Z. Xia and R. S. Liu, J. Phys. Chem. C, 116, 15604–15609 (2012).CrossRefGoogle Scholar
  44. 44.
    D. Geng, G. Li, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, J. Mater. Chem., 22, 14262–14271 (2012).CrossRefGoogle Scholar
  45. 45.
    S. Choi, Y. J. Yun, and H. K. Jung, Mater. Lett., 75, 186–188 (2012).CrossRefGoogle Scholar
  46. 46.
    C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, Opt. Quantum Electron., 44, 111–117 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingP. R. China

Personalised recommendations