Advertisement

Journal of Applied Spectroscopy

, Volume 80, Issue 5, pp 737–744 | Cite as

Analysis of Acid-Base Properties of Flavonoid Genistein

  • C. Mielczarek
  • W. Pająk
Article
  • 94 Downloads

The first two dissociation constants of genistein, pK1 = 7.30 ± 0.07 and pK2 = 9.93 ± 0.05, were determined spectrophotometrically. Simultaneously the second constant, pK2 = 10.18 ± 0.07, was confirmed potentiometrically, and, additionally, the third dissociation constant, pK3 = 11.68 ± 0.15, was determined. The values of the last two dissociation constants were confirmed with the graphical method of Schwarzenbach. The values of constants obtained are pK2 = 10.36 and pK3 = 11.47, respectively. In order to establish the deprotonation site in the genistein molecule, a number of its physicochemical parameters were calculated. Computations were performed with HyperChem v. 7.0 software. A procedure for geometrical optimization (AM1 method, RHF function, Polak-Ribiere algorithm) of different molecular forms was applied. It was found that deprotonation of the neutral molecule of genistein takes place in the following order: 7-OH, 4′-OH and 5-OH.

Keywords

genistein protonation physicochemical parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Mark, Ch. Messina, E. Wood, J. Nutr., 17, 2891–2903 (2008).Google Scholar
  2. 2.
    M. J. Tikkanen, K. Wahala, S. Ojala, V. Vihm. H. Adlercreutz, Proc. Natl. Acad. Sci. USA, 95, 3106–3110 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    C. M. Biju, S. D. J. Reji, Clin. Biochem. Nutr., 43, 129–130 (2008).CrossRefGoogle Scholar
  4. 4.
    Y. Li , P. Hao, S. Zheng, K. Tu , H. Fan, R. Zhu, G. Ding, C. Don, C. Wang , X. Li , H. J. Thiesen, Y. E. Che, H. Jiang, L.Liu, Y. Li, Nucleic Acids Res., 36, 129–133 (2008).CrossRefGoogle Scholar
  5. 5.
    T. Akiyama J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, Y. T. Fukami, J. Biol. Chem., 262, 5592–5595 (1987).Google Scholar
  6. 6.
    S. Yousefi , D. Green, R. Blaser, H. U. Simon, Proc. Natl. Acad. Sci. USA, 91, 10868–10872 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    G. Grynkiewicz, O. Achmatowicz, W. Pucko, Postępy Fitoter., 3, 15–20 (2000).Google Scholar
  8. 8.
    D. Sypniewski I. Bednarek, S. Gałka, T. Loch, G. Machnik, D. Błaszczyk, D. Sołtysik, Farm. Przegl. Nauk, 11, 5–9 (2008).Google Scholar
  9. 9.
    J. E. Lewis, H. Soler-Vilá, P. E. Clark, L. A. Kresty, G. O. Allen, J. J. Hu, J. Nutr. Cancer, 61, 216–224 (2009).CrossRefGoogle Scholar
  10. 10.
    N. B. Kumar, J. P. Krischer, K. Allen, D. Riccardi, K. Besterman-Dahan, R. Salup, L. Kang, P. Xu, J. B. Pow-Sang., J. Nutr. Cancer, 59, 169–175 (2007).CrossRefGoogle Scholar
  11. 11.
    K. B. Bouker, L. Hilakivi-Clarke, Environ. Health Perspect, 108, 701–708 (2000).CrossRefGoogle Scholar
  12. 12.
    R. Liew, K. T. Macleod, P. Collins, FASEB J., 17, 1307–1309 (2003).Google Scholar
  13. 13.
    R. Lie, M. A. Stagg, J. Chan, P. Collins, K. T. Macleod, Cardiovasc. Res., 61, 66–76 (2004).CrossRefGoogle Scholar
  14. 14.
    W. Qin, W. Zhu, H. Shi, J. E. Hewett, R. L. Ruhlen, R. S. MacDonald, G. E. Rottinghaus, Y. C. Chen, Nutr. Cancer, 61, 238–244 (2009).CrossRefGoogle Scholar
  15. 15.
    A. Lasco, A. Catalano, N. Morabito, A. Gaudio, G. Basile , A. Trifi letti, M. Atteritano, Osteoporos Int., 22, 299–303 (2009).CrossRefGoogle Scholar
  16. 16.
    N. B. Kumar, A. Cantor, K. Allen, D. Riccardi, C. E. Cox, Cancer, 94, 1166–1174 (2002).CrossRefGoogle Scholar
  17. 17.
    M. B. van Duursen, E. E. Smeets, J. C. Rijk, S. M. Nijmeijer, M. van den Berg, Toxicol. Appl. Pharmacol., 269, N 2, 132–140 (2013).CrossRefGoogle Scholar
  18. 18.
    N. Hosokawa, K. Hirayoshi, H. Kudo, H. Takechi, A. Aoike, K. Kawai, K. Nagata, Mol. Cell. Biol., 12, 3490–3498 (1992).Google Scholar
  19. 19.
    D. U. Richter, I. Mylonas, B. Toth, C. Scholz, V. Briese, K. Friese, U. Jeschke, Gynecol. Endocrinol., 25, 32–38 (2009).CrossRefGoogle Scholar
  20. 20.
    W. Ma, L. Yuan, H. Yu, B. Ding, Y. Xi, J. Feng, R. Xiao, Int. J. Dev. Neurosci., 28, 289–295 (2010).CrossRefGoogle Scholar
  21. 21.
    T. L. Jia, H. Z. Wang, L. P. Xie, X. Y. Wang R. Q. Zhang, Biochem. Pharmacol., 65, 709–715 (2003).CrossRefGoogle Scholar
  22. 22.
    E. Piotrowska, J. Jakóbkiewicz-Banecka, S. Barańska, A. Tylki-Szymańska, B. Czartoryska, A. Węgrzyn, G. Węgrzyn, Eur. J. Genet., 14, 846–852 (2006).CrossRefGoogle Scholar
  23. 23.
    E. Piotrowska, J. Jakóbkiewicz-Banecka, A. Tylki-Szymańska, A. Liberek, A. Maryniak, M. Malinowska, B. Czartoryska, E. Puk, A. Kloska, T. Liberek, S. Barańska, A. Węgrzyn, G. Węgrzyn, Curr. Ther. Res. Clin. Exp., 69, 166–179 (2008).CrossRefGoogle Scholar
  24. 24.
    J. Jakóbkiewicz-Banecka, E. Piotrowska, M. Narajczyk, S. Barańska, G. Wegrzyn, J. Biomed. Sci., 16, 26–30 (2009).CrossRefGoogle Scholar
  25. 25.
    A. E. Daruhazi, L. Szente, B. Balogh, P. Matyus, S. Beni, M. Takacs, A. Gergely,P. Horvath, E. Szoke, E. P. Lemberkovics, J. Pharm. & Biomed. Anal., 48, 636–640 (2009).CrossRefGoogle Scholar
  26. 26.
    J. Zielonka, J. Gębicki, G. Grynkiewicz, Free Radic. Biol. &Med., 35, 958–965 (2003).CrossRefGoogle Scholar
  27. 27.
    M. Meyer, J. Quantum Chem., 76, 724–732 (2000).CrossRefGoogle Scholar
  28. 28.
    C. Mielczarek, Pharmazie, 57, 614–618 (2002).Google Scholar
  29. 29.
    C. Mielczarek, Eur. J. Pharm. Sci., 25, 273–279 (2005).CrossRefGoogle Scholar
  30. 30.
    C. Mielczarek, Farm. Pol., 59, 11–17 (2003).Google Scholar
  31. 31.
    J. Inczedy, Równowagi Kompleksowania w Chemii Analitycznej, PWN, Warszawa (1979).Google Scholar
  32. 32.
    HyperChem for Windows Release 7.2 HyperCube Inc. (2002)Google Scholar
  33. 33.
    A. Stanisz, Przystępny Kurs Statystyki, StatSoft Polska Sp.zoo, Kraków (2001).Google Scholar
  34. 34.
    T. Herman, Farmacja Fizyczna, PZWL, Warszawa (2007).Google Scholar
  35. 35.
    L. Sobczyk, Wiad. Chem., 55, 595–627 (2001).Google Scholar
  36. 36.
    M. K. Cyrański, M. Krygowski, Wiad. Chem., 54, 57–69 (2000).Google Scholar
  37. 37.
    W. Kołos, J. Sadlej, Atom i Cząsteczka, WNT, Warszawa (1998).Google Scholar
  38. 38.
    R. F. Nalewajski, Podstawy i Metody Chemii Kwantowej, PWN, Warszawa (2001).Google Scholar
  39. 39.
    N. P. Slabbert, Tetrahedron, 33, 821–824 (1977).CrossRefGoogle Scholar
  40. 40.
    P. K. Agrawal, H. J. Schneider, Tetrahedron Lett., 24, 177–180 (1983).CrossRefGoogle Scholar
  41. 41.
    C. Manach, A. Scalbert, C Morand, C Rémésy, L. Jiménez, Am. J. Clin. Nutr., 79, 727–747 (2004).Google Scholar
  42. 42.
    Y. C. Chang, M. G. Nair. J. L. Nitis, J. Nat. Prod., 58, 1901–1905 (1995).CrossRefGoogle Scholar
  43. 43.
    Y. C. Chang, M. G. Nair, J. Nat. Prod., 58, 1892–1896 (1995).CrossRefGoogle Scholar
  44. 44.
    A. J. Day, F. J. Cañada, J. C. Díaz, P. A. Kroon, R. Mclauchlan, C. B. Faulds, G. W. Plumb, M. R. G. Williamson, FEBS Lett., 468, 166–170 (2000).CrossRefGoogle Scholar
  45. 45.
    T. Yasuda, Y. Kano, K. Saito, K. Ohsawa, Biol. Pharm. Bull., 17, 1369–1374 (1994).CrossRefGoogle Scholar
  46. 46.
    C. Y. Chen., G. I. Holtzman, R. M. Bakhit, Pakist. J. Nutr., 1, 1–13 (2002).CrossRefGoogle Scholar
  47. 47.
    V. M. Breinholt, E. A. Offord, C. Brouwer, S. E. Nielsen, K. Brøsen, T. Friedberg, Food Chem. Toxicol., 40, 609–616 (2002).CrossRefGoogle Scholar
  48. 48.
    P. Hodek, P. Trefil, M. Stiborová, Chem. Biol. Interact., 139, 1–21 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Medical University of LodzLodzPoland

Personalised recommendations