Advertisement

Journal of Applied Spectroscopy

, Volume 80, Issue 3, pp 366–371 | Cite as

Inversion of electron spin resonance signal in coals

  • N. A. Poklonski
  • S. A. Vyrko
  • O. N. Poklonskaya
  • N. M. Lapchuk
  • S. Munkhtsetseg
Article

Samples of coal from the Donetsk basin (carbon content ~90 mass%) in both lump and powder forms were studied by continuous-wave electron spin resonance (ESR) at room temperature in air. Inversion of the ESR signal (being in phase with modulation of the constant magnetic field) with an increase of lump size along the magnetic component of the microwave field was observed in the cavity of the radiospectrometer.

Keywords

coals electron spin resonance ESR signal inversion with an increase of sample size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. D. Rus’yanova, Coal Chemistry [in Russian], Nauka, Moscow (2003).Google Scholar
  2. 2.
    A. D. Alekseev, E. V. Ul’yanova, and T. A. Vasilenko, Usp. Fiz. Nauk, 175, No. 11, 1217–1232 (2005).CrossRefGoogle Scholar
  3. 3.
    V. K. Malinovskii, Fiz. Tverd. Tela, 41, No. 5, 805–808 (1999).Google Scholar
  4. 4.
    V. S. Dotsenko, Usp. Fiz. Nauk, 181, No. 3, 269–292 (2011).CrossRefGoogle Scholar
  5. 5.
    M. L. Gorbaty, Fuel, 73, No. 12, 1819–1828 (1994).CrossRefGoogle Scholar
  6. 6.
    G. D. Frolkov and A. G. Frolkov, Khim. Tverd. Topl., No. 1, 9–13 (2011).Google Scholar
  7. 7.
    V. I. Al’shits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, Fiz. Tverd. Tela, 54, No. 2, 305–312 (2012).Google Scholar
  8. 8.
    A. L. Buchachenko, Zh. Eksp. Teor. Fiz., 132, No. 3(9), 673–679 (2007).Google Scholar
  9. 9.
    R. Sh. Vartapetyan and A. M. Voloshchuk, Usp. Khim., 64, No. 11, 1055–1072 (1995).CrossRefGoogle Scholar
  10. 10.
    I. I. Lishtvan, V. K. Zhukov, N. T. Kartel’, and L. V. Strigutskii, Khim. Tverd. Topl., No. 4, 50–57 (1999).Google Scholar
  11. 11.
    E. Houzé and M. Nechtschein, Synth. Met., 84, Nos. 1–3, 947–948 (1997).CrossRefGoogle Scholar
  12. 12.
    L. S. Lyubchenko and M. L. Lyubchenko, Solid Fuel Chem., 32, No. 4, 19–41 (1998).Google Scholar
  13. 13.
    A. N. Gubkin, P. P. Zaitsev, V. A. Zagoruiko, E. M. Panchenko, O. I. Prokopalo, and G. D. Frolkov, Pisma Zh. Tekh. Fiz., 16, No. 5, 88–90 (1990).Google Scholar
  14. 14.
    V. A. Nikerov and G. V. Sholin, Kinetics of Dehydration Processes [in Russian], Energoatomizdat, Moscow (1985).Google Scholar
  15. 15.
    N. F. Uvarov and V. V. Boldyrev, Usp. Khim., 70, No. 4, 307–329 (2001).CrossRefGoogle Scholar
  16. 16.
    O. A. Petrii and G. A. Tsirlina, Usp. Khim., 70, No. 4, 330–344 (2001).CrossRefGoogle Scholar
  17. 17.
    V. A. Klimova, Principal Microanalytical Methods for Organic Compounds [in Russian], Khimiya, Moscow (1975).Google Scholar
  18. 18.
    F. F. Mazda, Electronic Instruments and Measurement Techniques, Cambridge University Press, Cambridge, New York (1987).Google Scholar
  19. 19.
    D. K. Schroder, Semiconductor Material and Device Characterization, Wiley, New York (2006).Google Scholar
  20. 20.
    M. Jonas, Radiat. Meas., 27, No. 5/6, 943–973 (1997).CrossRefGoogle Scholar
  21. 21.
    G. R. Eaton, S. S. Eaton, D. P. Barr, and R. T. Weber, Quantitative EPR, Springer, Vienna (2010).CrossRefGoogle Scholar
  22. 22.
    N. A. Poklonskii, T. M. Lapchuk, N. I. Gorbachuk, V. A. Nikolaenko, and I. V. Bachuchin, Fiz. Tekh. Poluprovodn., 39, No. 8, 931–934 (2005).Google Scholar
  23. 23.
    J. R. Harbridge, G. A. Rinard, R. W. Quine, S. S. Eaton, and G. R. Eaton, J. Magn. Reson., 156, No. 1, 41–51 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, Wiley, New York (2007).Google Scholar
  25. 25.
    V. T. Dolgopolov, Usp. Fiz. Nauk, 130, No. 2, 241–278 (1980).CrossRefGoogle Scholar
  26. 26.
    A. V. Timofeev, Usp. Fiz. Nauk, 176, No. 11, 1227–1236 (2006).CrossRefGoogle Scholar
  27. 27.
    M. Giordano, M. Martinelli, L. Pardi, and S. Santucci, Phys. Rev. Lett., 59, No. 3, 327–330 (1987).ADSCrossRefGoogle Scholar
  28. 28.
    D. Gourier, L. Binet, and O. Guillot-Noel, C. R. Chim., 7, Nos. 3–4, 293–302 (2004).CrossRefGoogle Scholar
  29. 29.
    V. F. Stel’makh and L. V. Strigutskii, Zh. Prikl. Spektrosk., 65, No. 2, 224–229 (1998).Google Scholar
  30. 30.
    M. Sueki, G. A. Rinard, S. S. Eaton, and G. R. Eaton, J. Magn. Reson., Ser. A, 118, No. 2, 173–188 (1996).CrossRefGoogle Scholar
  31. 31.
    A. I. Smirnov, E. N. Degtyarev, O. E. Yakimchenko, and Ya. S. Lebedev, Prib. Tekh. Eksp., No. 1, 195–200 (1991).Google Scholar
  32. 32.
    S. A. Afanas’ev and D. I. Sementsov, Usp. Fiz. Nauk, 178, No. 4, 377–384 (2008).CrossRefGoogle Scholar
  33. 33.
    M. Dressel and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press, Cambridge (2002).CrossRefGoogle Scholar
  34. 34.
    J. D. Jackson, Classical Electrodynamics, Wiley, New York (1998).Google Scholar
  35. 35.
    C. A. Balanis, P. W. Shepard, F. T. C. Ting, and W. F. Kardosh, IEEE Trans. Geosci. Rem. Sens., GE-18, No. 3, 250–256 (1980).ADSCrossRefGoogle Scholar
  36. 36.
    C. A. Balanis, J. Microwave Power, 18, No. 1, 45–54 (1983).Google Scholar
  37. 37.
    M. Hotta, M. Hayashi, M. T. Lanagan, D. K. Agrawal, and K. Nagata, ISIJ Int., 51, No. 11, 1766–1772 (2011).CrossRefGoogle Scholar
  38. 38.
    I. G. Zamaleev, A. R. Kessel’, G. B. Teitel’baum, and E. G. Kharakhash’yan, Fiz. Met. Metalloved., 34, No. 1, 16–20 (1972).Google Scholar
  39. 39.
    A. I. Spitsyn, Zh. Tekh. Fiz., 75, No. 9, 60–63 (2005).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. A. Poklonski
    • 1
  • S. A. Vyrko
    • 1
  • O. N. Poklonskaya
    • 1
  • N. M. Lapchuk
    • 1
  • S. Munkhtsetseg
    • 1
  1. 1.Belarusian State UniversityMinskBelarus

Personalised recommendations