Journal of Applied Spectroscopy

, Volume 80, Issue 2, pp 284–288 | Cite as

Modified sequential floating selection for blood glucose monitoring using near infrared spectral data

  • C. F. So
  • Yugu Zeng
  • Kup-Sze Choi
  • J. W. Y. Chung
  • T. K. S. Wong

To enable non-invasive blood glucose monitoring using near infrared spectroscopy, a modified sequential floating selection method is proposed to remove uninformative data from the spectrum. A linear discriminant function is then used for classification based on selected features. Experiments show that this approach is able to give promising prediction results by classifying near infrared spectroscopic data of blood glucose with good accuracy.


sequential floating selection linear discriminant function near infrared spectroscopic data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Health Organization. Diabetes Programme: Fact sheets No. 312 (2011) Retrieved 03 20, 2011;
  2. 2.
    S. Wild, G. Roglic, R. Sicree, H. King, and A. Green, Diabetes Care, 1047–1053 (2004).Google Scholar
  3. 3.
    World Health Organization. Screening for Type 2 Diabetes, Report of a World Health Organization and International Diabetes Federation meeting (2003);
  4. 4.
    M. Arnold and G. Small, Analyt. Chem., 77, 5429–5439 (2005).CrossRefGoogle Scholar
  5. 5.
    I. Fine and L. Shvartsman, Method for Non-Invasive Optical Measurements of Blood Parameters, Patent USA No. 658, 7704 (2003).Google Scholar
  6. 6.
    H. Heise, A. Bittner, and R. Marbach, J. Near Infrared Spectrosc., 6, 349–359 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    D. A. Burns and E. W. Ciurczak, Handbook of Near Infrared Analysis, 3rd ed., CRC Press/Taylor & Francis, Boca Raton, FL, (2008).Google Scholar
  8. 8.
    Y. Ozaki, W. F. McClure, and A. A. Christy, Near-Infrared Spectroscopy in Food Science and Technology, Wiley, Hoboken, NJ, (2007).Google Scholar
  9. 9.
    E. W. Ciurczak and J. K. Drennen, III, Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy, Marcel Dekker, New York (2002).Google Scholar
  10. 10.
    R. Raghavachari, Near-Infrared Applications in Biotechnology, Marcel Dekker, New York (2001).Google Scholar
  11. 11.
    H. W.Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy: Principles, Instruments, Applications, Wiley-VCH, Weinheim (2002).Google Scholar
  12. 12.
    P. Pudil, N. J. Novovicova, and J. Kittler, Pattern Recogn. Lett., 15, 1119–1125 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • C. F. So
    • 1
  • Yugu Zeng
    • 1
  • Kup-Sze Choi
    • 1
  • J. W. Y. Chung
    • 2
    • 3
  • T. K. S. Wong
    • 3
  1. 1.The Hong Kong Polytechnic University, Centre for Integrative Digital Health, School of NursingHong KongHong Kong
  2. 2.The Hong Kong Institute of Education, Department of Health and Physical EducationHong KongHong Kong
  3. 3.Tung Wah College, Department of Nursing and Health SciencesHong KongHong Kong

Personalised recommendations