Journal of Applied Spectroscopy

, Volume 80, Issue 2, pp 258–264 | Cite as

Spectrophotometric determination of norepinephrine with sodium iodate and determination of its acidity constants

  • E. Y. Hashem
  • A. K. Youssef

A spectrophotometric method is proposed for the determination of norepinephrine (NE) and its bitartrate salts. The method was based on the development of a red color (λmax = 495 nm) with sodium iodate in aqueous alcoholic medium at pH 5. The color was stable for at least 4 hrs. The molar reacting ratio of NE to sodium iodate was 1:4. A linear relationship was obtained between the absorption intensity and NE concentration in the range of 3.384–37.224 μg/ml with detection limit of 0.067 μg/ml and correlation coefficient of 0.9972. The present work facilitated the determination of the three acidity constants, 7.564 ± 0.02, 9.036 ± 0.034, and 10.761 ± 0.023. The reaction mechanism was also described. The proposed method was successfully applied for the determination of NE in pharmaceutical formulations. Results for analysis of bulk drugs and injections agree with those of official methods.


norepinephrine acidity constants oxidation iodate spectrophotometry pharmaceuticals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. G. Katzung, Basic & Clinical Pharmacology, 6th ed., Appleton & Lange, Connecticut, (1995).Google Scholar
  2. 2.
    C. Martin, L. Papazian, G. Perrin, and F. Gouin, Chest, 103, 1826 (1993).CrossRefGoogle Scholar
  3. 3.
    P. Desjars, M. Pinaud, G. Potel, F. Tasseau, and M. D. Touze, Crit. Care Med, 15, 134 (1987).CrossRefGoogle Scholar
  4. 4.
    J. L. Moran, M. O. Fathartaigh, A. R. Peisach, M. J. Chapman, and P. Leppard, Crit. Care Med., 21, 70 (1993).CrossRefGoogle Scholar
  5. 5.
    H. Jeong, H. Kim, and S. Jeon, Microchem. J., 78, 181 (2004).CrossRefGoogle Scholar
  6. 6.
    C. Bian, Q. Zeng, H. Xiong, X. Zhang, and S. Wang, Bioelectrochemistry, 79, 1 (2010).CrossRefGoogle Scholar
  7. 7.
    Y. Li, X. Huang, Y. Chen, L. Wang, and X. Lin, Microchim. Acta, 164, 107 (2009).CrossRefGoogle Scholar
  8. 8.
    M. Mazloum-Ardakani, H. Rajabi, H. Beitollahi, B. B. F. Mirjalili, A. Akbari, and N. Taghavinia, Int. J. Electrochem. Sci, 5, 147 (2010).Google Scholar
  9. 9.
    T. Yoshitake, K. Fujino, J. Kehr, J. Ishida, H. Nohta, and M. Yamaguchi, Anal. Biochem., 312, 125 (2003).CrossRefGoogle Scholar
  10. 10.
    M. A. Fotopoulou and P. C. Ioannou, Anal. Chim. Acta, 462, 179 (2002).CrossRefGoogle Scholar
  11. 11.
    Z. D. Peterson, D. C. Collins, C. R. Bowerbank, M. L. Lee, and S. W. Graves, J . Chromatogr. B, 776, 221 (2002).CrossRefGoogle Scholar
  12. 12.
    D. L. Kuhlenbeck, T. P. O’Neill, C. E. Mack, S. H. Hoke, and K. R. Wehmeyer, J . Chromatogr. B, 738, 319 (2000).CrossRefGoogle Scholar
  13. 13.
    G. H. Ragab, H. Nohta, and K. Zaitsu, Anal. Chim. Acta, 403, 155 (2000).CrossRefGoogle Scholar
  14. 14.
    G. H. Ragab, H. Nohta, M. Kai, Y. Ohkura, and K. Zaitsu, J . Pharm. Biomed. Anal., 13, 645 (1995).CrossRefGoogle Scholar
  15. 15.
    J. J. B. Nevado, J. M. L. Gallego, and P. B. Laguna, Anal. Chim. Acta, 300, 293 (1995).CrossRefGoogle Scholar
  16. 16.
    J. R. Doty, Anal. Chem., 20, 1166 (1948).CrossRefGoogle Scholar
  17. 17.
    P. Nagaraja, K. C. S. Murthy, K. S. Rangappa, and N. M. M. Gowda, Talanta, 46, 39 (1998).CrossRefGoogle Scholar
  18. 18.
    M. A. Korany, A. M. Wahbi, and M. H. Abdel-Hady, J. Pharm. Biomed. Anal., 2, 537 (1994).CrossRefGoogle Scholar
  19. 19.
    A. G. Davidson, J. Pharm. Biomed. Anal., 2, 45 (1984).CrossRefGoogle Scholar
  20. 20.
    R. T. Sane, P. M. Deshpande, C. L. Sawant, S. M. Dolas, V. G. Nayak, and S. S. Zarapkar, Indian Drugs, 24, 199 (1987).Google Scholar
  21. 21.
    M. H. Sorouraddin, J. L. Manzoori, E. Kargarzadeh, and A. M. H. Shabani, J. Pharm. Biomed. Anal., 18, 877 (1998).CrossRefGoogle Scholar
  22. 22.
    M. Zhu, X. Huang, and H. Shen, Anal. Chim. Acta, 357, 261 (1997).CrossRefGoogle Scholar
  23. 23.
    F. B. Salem, Talanta, 34, 810 (1987).CrossRefGoogle Scholar
  24. 24.
    M. E. El-Kommos, F. A. Mohamed, and A. S. Khedr, J. Assoc. Off. Anal. Chem., 73, 516 (1990).Google Scholar
  25. 25.
    J. Yang, G. Zhang, X. Wu, F. Huang, C. Lin, X. Cao, L. Sun, and Y. Ding, Anal. Chim. Acta, 363, 105 (1998).CrossRefGoogle Scholar
  26. 26.
    H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, Anal. Chim. Acta, 497, 93 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Liu, J. Yang, X. Wu, and L. Li, J. Fluoresc., 13, 123 (2003).CrossRefGoogle Scholar
  28. 28.
    M. M. Karim, S. M. Alam, and S. H. Lee, J. Fluoresc., 17, 427 (2007).CrossRefGoogle Scholar
  29. 29.
    A. E. Sanchez-Rivera, S. Corona-Avendano, G. Alacorn-Angeles, A. Rojas-Hernandez, M. T. Ramirez-Silva, and M. A. Romero-Romo, Spectrochim. Acta, A, 59, 3193 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    J. C. Miller and J. N. Miller, Statistics for Analytical Chemistry, Wiley-VCH, New York, (1984).Google Scholar
  31. 31.
    R. A. Heacock, in Advances in Heterocyclic Chemistry, Eds. A. R. Katritzky, A. J. Boulton, and J. M. Lagowski Academic Press, New York, (1965), p. 17.Google Scholar
  32. 32.
    R. A. Heacock and W. S. Powell, in Progress in Medicinal Chemistry, Eds. G. P. Ellis, G. B. West, North-Holland, Amsterdam, (1973), p. 291.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Assiut UniversityAssiutEgypt

Personalised recommendations