Skip to main content
Log in

Spectrophotometric determination of norepinephrine with sodium iodate and determination of its acidity constants

  • Published:
Journal of Applied Spectroscopy Aims and scope

A spectrophotometric method is proposed for the determination of norepinephrine (NE) and its bitartrate salts. The method was based on the development of a red color (λmax = 495 nm) with sodium iodate in aqueous alcoholic medium at pH 5. The color was stable for at least 4 hrs. The molar reacting ratio of NE to sodium iodate was 1:4. A linear relationship was obtained between the absorption intensity and NE concentration in the range of 3.384–37.224 μg/ml with detection limit of 0.067 μg/ml and correlation coefficient of 0.9972. The present work facilitated the determination of the three acidity constants, 7.564 ± 0.02, 9.036 ± 0.034, and 10.761 ± 0.023. The reaction mechanism was also described. The proposed method was successfully applied for the determination of NE in pharmaceutical formulations. Results for analysis of bulk drugs and injections agree with those of official methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Katzung, Basic & Clinical Pharmacology, 6th ed., Appleton & Lange, Connecticut, (1995).

  2. C. Martin, L. Papazian, G. Perrin, and F. Gouin, Chest, 103, 1826 (1993).

    Article  Google Scholar 

  3. P. Desjars, M. Pinaud, G. Potel, F. Tasseau, and M. D. Touze, Crit. Care Med, 15, 134 (1987).

    Article  Google Scholar 

  4. J. L. Moran, M. O. Fathartaigh, A. R. Peisach, M. J. Chapman, and P. Leppard, Crit. Care Med., 21, 70 (1993).

    Article  Google Scholar 

  5. H. Jeong, H. Kim, and S. Jeon, Microchem. J., 78, 181 (2004).

    Article  Google Scholar 

  6. C. Bian, Q. Zeng, H. Xiong, X. Zhang, and S. Wang, Bioelectrochemistry, 79, 1 (2010).

    Article  Google Scholar 

  7. Y. Li, X. Huang, Y. Chen, L. Wang, and X. Lin, Microchim. Acta, 164, 107 (2009).

    Article  Google Scholar 

  8. M. Mazloum-Ardakani, H. Rajabi, H. Beitollahi, B. B. F. Mirjalili, A. Akbari, and N. Taghavinia, Int. J. Electrochem. Sci, 5, 147 (2010).

    Google Scholar 

  9. T. Yoshitake, K. Fujino, J. Kehr, J. Ishida, H. Nohta, and M. Yamaguchi, Anal. Biochem., 312, 125 (2003).

    Article  Google Scholar 

  10. M. A. Fotopoulou and P. C. Ioannou, Anal. Chim. Acta, 462, 179 (2002).

    Article  Google Scholar 

  11. Z. D. Peterson, D. C. Collins, C. R. Bowerbank, M. L. Lee, and S. W. Graves, J . Chromatogr. B, 776, 221 (2002).

    Article  Google Scholar 

  12. D. L. Kuhlenbeck, T. P. O’Neill, C. E. Mack, S. H. Hoke, and K. R. Wehmeyer, J . Chromatogr. B, 738, 319 (2000).

    Article  Google Scholar 

  13. G. H. Ragab, H. Nohta, and K. Zaitsu, Anal. Chim. Acta, 403, 155 (2000).

    Article  Google Scholar 

  14. G. H. Ragab, H. Nohta, M. Kai, Y. Ohkura, and K. Zaitsu, J . Pharm. Biomed. Anal., 13, 645 (1995).

    Article  Google Scholar 

  15. J. J. B. Nevado, J. M. L. Gallego, and P. B. Laguna, Anal. Chim. Acta, 300, 293 (1995).

    Article  Google Scholar 

  16. J. R. Doty, Anal. Chem., 20, 1166 (1948).

    Article  Google Scholar 

  17. P. Nagaraja, K. C. S. Murthy, K. S. Rangappa, and N. M. M. Gowda, Talanta, 46, 39 (1998).

    Article  Google Scholar 

  18. M. A. Korany, A. M. Wahbi, and M. H. Abdel-Hady, J. Pharm. Biomed. Anal., 2, 537 (1994).

    Article  Google Scholar 

  19. A. G. Davidson, J. Pharm. Biomed. Anal., 2, 45 (1984).

    Article  Google Scholar 

  20. R. T. Sane, P. M. Deshpande, C. L. Sawant, S. M. Dolas, V. G. Nayak, and S. S. Zarapkar, Indian Drugs, 24, 199 (1987).

    Google Scholar 

  21. M. H. Sorouraddin, J. L. Manzoori, E. Kargarzadeh, and A. M. H. Shabani, J. Pharm. Biomed. Anal., 18, 877 (1998).

    Article  Google Scholar 

  22. M. Zhu, X. Huang, and H. Shen, Anal. Chim. Acta, 357, 261 (1997).

    Article  Google Scholar 

  23. F. B. Salem, Talanta, 34, 810 (1987).

    Article  Google Scholar 

  24. M. E. El-Kommos, F. A. Mohamed, and A. S. Khedr, J. Assoc. Off. Anal. Chem., 73, 516 (1990).

    Google Scholar 

  25. J. Yang, G. Zhang, X. Wu, F. Huang, C. Lin, X. Cao, L. Sun, and Y. Ding, Anal. Chim. Acta, 363, 105 (1998).

    Article  Google Scholar 

  26. H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, Anal. Chim. Acta, 497, 93 (2003).

    Article  ADS  Google Scholar 

  27. Y. Liu, J. Yang, X. Wu, and L. Li, J. Fluoresc., 13, 123 (2003).

    Article  Google Scholar 

  28. M. M. Karim, S. M. Alam, and S. H. Lee, J. Fluoresc., 17, 427 (2007).

    Article  Google Scholar 

  29. A. E. Sanchez-Rivera, S. Corona-Avendano, G. Alacorn-Angeles, A. Rojas-Hernandez, M. T. Ramirez-Silva, and M. A. Romero-Romo, Spectrochim. Acta, A, 59, 3193 (2003).

    Article  ADS  Google Scholar 

  30. J. C. Miller and J. N. Miller, Statistics for Analytical Chemistry, Wiley-VCH, New York, (1984).

    Google Scholar 

  31. R. A. Heacock, in Advances in Heterocyclic Chemistry, Eds. A. R. Katritzky, A. J. Boulton, and J. M. Lagowski Academic Press, New York, (1965), p. 17.

  32. R. A. Heacock and W. S. Powell, in Progress in Medicinal Chemistry, Eds. G. P. Ellis, G. B. West, North-Holland, Amsterdam, (1973), p. 291.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. Hashem.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 2, pp. 226–272, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashem, E.Y., Youssef, A.K. Spectrophotometric determination of norepinephrine with sodium iodate and determination of its acidity constants. J Appl Spectrosc 80, 258–264 (2013). https://doi.org/10.1007/s10812-013-9755-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-013-9755-y

Keywords

Navigation