Advertisement

Journal of Applied Spectroscopy

, Volume 79, Issue 2, pp 302–306 | Cite as

NMR analysis of diacyl peroxide decomposition in methanol in response to temperature and microwave radiation

  • O. A. Haidukevich
  • E. D. Skakovskii
  • L. Yu. Tychinskaya
  • T. D. Zvereva
  • E. A. Dikusar
  • S. A. Lamotkin
  • S. V. Rykov
Article
  • 58 Downloads

We have studied the decomposition of benzoyl and acetyl benzoyl peroxides in methanol-d4 in response to temperature and microwave radiation. We have shown that chemically-induced dynamic nuclear polarization (CIDNP) can be observed even when the reactions are carried out in spectrometers with high magnetic fields. In this case, spin correlation persists in geminal radical pairs involving labile acyloxyl radicals. Regardless of the method used to initiate peroxide decomposition, the same amount of products are formed. Homolysis occurs according to a chain mechanism. The contribution of induced decomposition decreases over the course of the reaction. Dissolved oxygen molecules efficiently terminate the chain, decreasing the rate of peroxide decomposition. In the case of acetyl benzoyl peroxide, the product yield depends on the initiation mechanism: for microwave irradiation, the solvent molecules are more active while dissolved oxygen is less active than in thermolysis.

Keywords

NMR spectra thermolysis microwave radiation benzoyl peroxide acetyl benzoyl peroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Antonovskii and S. L. Khursan, Physical Chemistry of Organic Peroxides [in Russian], Akademkniga, Moscow (2003).Google Scholar
  2. 2.
    O. A. Gaidukevich, E. D. Skakovskii, L. Yu. Tychinskaya, and S. A Lamotkin, Tr. Bel. Gos. Tekhnol. Univ., Ser. IV. Khimiya i Tekhnologiya Org. Veshchestv, No. 16, 21–25 (2008).Google Scholar
  3. 3.
    S. S. Berdonosov, O. G. Berdonosova, and I. V. Znamenskaya, Khim. Tekhnologiya, No. 3, 2–8 (2000).Google Scholar
  4. 4.
    G. A. Russel and R. F. Bridger, J. Am. Chem. Soc., 85, No. 23, 37765–37766 (1963).CrossRefGoogle Scholar
  5. 5.
    I. A. Den Hollander, J. Phys. Chem., 10, No. 2, 167–184 (1975).MathSciNetGoogle Scholar
  6. 6.
    E. D. Skakovskii, S. A. Lamotkin, and L. Yu. Tychinskaya, Zh. Prikl. Spektrosk., 64, No. 3, 306–311 (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • O. A. Haidukevich
    • 1
  • E. D. Skakovskii
    • 1
  • L. Yu. Tychinskaya
    • 1
  • T. D. Zvereva
    • 1
  • E. A. Dikusar
    • 1
  • S. A. Lamotkin
    • 1
  • S. V. Rykov
    • 2
  1. 1.Institute of Physical Organic Chemistry, National Academy of Sciences of BelarusMinskBelarus
  2. 2.State University of ManagementMoscowRussia

Personalised recommendations