Advertisement

Journal of Applied Spectroscopy

, Volume 79, Issue 2, pp 203–210 | Cite as

Photoluminescence of fluoroacrylate polymers impregnated with Eu(bta)3 using supercritical CO2

  • V. I. Gerasimova
  • A. A. Antoshkov
  • Yu. S. Zavorotny
  • D. A. Lemenovskii
Article
  • 60 Downloads

Optical properties (photoluminescence and absorption) of Eu(bta)3(B) n (B = H2O or 1,10-phenanthroline) polycrystalline powders and fluoroacrylate polymers (FAPs) impregnated with these compounds using supercritical CO2 (SC CO2) were investigated. It was established that impregnation of Eu(bta)3phen into the FAPs using an SC CO2 solution was difficult to achieve. The type of B (ancillary ligand) and the polymer matrix were shown to influence the temperature quenching of photoluminescence of Eu3+ ions in the range 25–100°C. A comparative analysis of quantum yields (λex = 300 and 380 nm) and photoluminescence decay times (λex = 337.1 nm) for Eu(bta)3B n and for Eu(bta)3B n -doped FAPs was performed.

Keywords

Eu(bta)3 polymer photoluminescence 1,10-phenanthroline supercritical CO2 impregnation quantum yield temperature quenching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Eliseeva and J.-C. G. Bunzli, Chem. Soc. Rev., 39, 189–227 (2010).CrossRefGoogle Scholar
  2. 2.
    A. I. Cooper, J. Mater. Chem., 10, 207–234 (2000).CrossRefGoogle Scholar
  3. 3.
    V. I. Gerasimova, Yu. S. Zavorotny, A. O. Rybaltovskii, A. Yu. Chebrova, N. L. Semenova, D. A. Lemenovskii, and Yu. L. Slovohotov, J. Luminesc., 129, 1115–1119 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    V. I. Gerasimova, Yu. S. Zavorotnyi, A. O. Rybaltovskii, A. A. Antoshkov, V. I. Sokolov, E. V. Troitskaya, and V. N. Bagratashvili, Sverkhkrit. Flyuidy: Teor. Prakt., 5, 56–69 (2010).Google Scholar
  5. 5.
    G. F. Da Sa, O. L. Malta, C. De Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. Da Silva, Jr., Coord. Chem. Rev., 196, 165–195 (2000).CrossRefGoogle Scholar
  6. 6.
    M. T. Berry, P. S. May, and H. Xu, J. Phys. Chem., 100, 9216–9222 (1996).CrossRefGoogle Scholar
  7. 7.
    J. Feng, H.-J. Zhang, S.-Y. Song, Z.-F. Li, L.-N. Sun, Y. Xing, and X.-M. Guo, J. Luminesc., 128, 1957–1964 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    E. V. Triotskaya, S. I. Molchanova, and V. I. Sokolov, in: Proceedings of the XIIth Int. Sci. Conf. "Physicochemical Processes for Selection of Atoms and Molecules in Laser, Plasma, and Nanotechnology" [in Russian], March 31–April 4, 2008, Zvenigorod (2008), 215–220.Google Scholar
  9. 9.
    M. O. Gallyamov, R. A. Vinokur, L. N. Nikitin, E. E. Said-Galiyev, A. R. Khokhlov, and K. Schaumburg, Polym. Sci., Ser. A, 44, 581–592 (2002).Google Scholar
  10. 10.
    S. T. Frey and W. W. Horrocks, Inorg. Chim. Acta, 229, 383–390 (1995).CrossRefGoogle Scholar
  11. 11.
    A. A. Sviridova, A. B. Solov?eva, A. O. Rybaltovskii, V. A. Timofeeva, A. V. Krivandin, O. V. Shatalova, N. N. Glagolev, T. S. Zarkhina, and V. N. Bagratashvili, Sverkhkrit. Flyuidy: Teor. Prakt., 1, 13–22 (2006).Google Scholar
  12. 12.
    A. O. Rybaltovskii, V. I. Gerasimova, Yu. S. Zavorotnyi, and A. Yu. Chebrova, Zh. Prikl. Spektrosk., 76, No. 1, 104–111 (2009).Google Scholar
  13. 13.
    Zh. V. Dobrokhotova, I. G. Fomina, G. G. Aleksandrov, Yu. A. Velikodnyi, V. N. Ikorskii, A. S. Bogomyakov, L. N. Puntus, V. M. Novotortsev, and I. L. Eremenko, Zh. Neorg. Khim., 54, 727–744 (2009).Google Scholar
  14. 14.
    P. Dao and A. J. Twarowski, J. Chem. Phys., 85, 6823–6827 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • V. I. Gerasimova
    • 1
  • A. A. Antoshkov
    • 1
  • Yu. S. Zavorotny
    • 1
  • D. A. Lemenovskii
    • 2
  1. 1.D. V. Skobeltsyn Research Institute of Nuclear Physics, M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations