Journal of Applied Spectroscopy

, Volume 79, Issue 2, pp 189–196 | Cite as

Surface enhanced infrared spectral investigation of 2,3-bis(chloromethyl)anthracene-1,4,9,10-tetraone on silver nanoparticles

  • M. Umadevi
  • P. Vanelle
  • T. Terme

The size effect of silver nanoparticles on photophysical properties of 2,3-bis(chloromethyl)anthracene-1,4,9,10-tetraone (BCMAT) has been investigated using an IR technique. Silver colloids of different sizes have been prepared by two different methods. Mechanisms for adsorption and complex formation have been elucidated from surface-enhanced infrared absorption spectra. The observation shows that BCMAT is adsorbed on silver nanoparticles through a C = O group and that its orientation is stand-on. Surface enhancement factors have been calculated. As the particles decrease in size their total surface area grows, which leads to the gain in the enhancement factor.


2,3-bis(chloromethyl)anthracene-1,4,9,10-tetraone silver nanoparticles surface-enhanced infrared absorption spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hirsikorpi, T. Kamarainen, T. Teeri, A. Hohtola, Plant Sci., 162, 537–542 (2002).CrossRefGoogle Scholar
  2. 2.
    M. S. Jahan, Tappi J., 84, 61 (2001).Google Scholar
  3. 3.
    Z. Li, J. Li, G. J. Kubes, J. Pulp Paper Sci., 28, 234 (2002).Google Scholar
  4. 4.
    J. R. Brown, S. H. Imam, Prog. Med. Chem., 21, 169–236 (1984).CrossRefGoogle Scholar
  5. 5.
    D. H. Hua, K. Lou, J. Havens, E. M. Perchellet, Y. Wang, J. P. Perchellet, T. Iwamoto, Tetrahedron, 60, 10155–10163 (2004).CrossRefGoogle Scholar
  6. 6.
    N. L. Rosi, C. A. Mirkin, Chem. Rev., 105, 1547–1562 (2005).CrossRefGoogle Scholar
  7. 7.
    P. Alivisatos, Nat. Biotechnol., 22, 47–52 (2004).CrossRefGoogle Scholar
  8. 8.
    P. V. Kamat, J. Phys. Chem., B, 106, 7729–7744 (2002).CrossRefGoogle Scholar
  9. 9.
    A. Ivanisevic, C. A. Mirkin, J. Am. Chem. Soc., 123, 7887–7889 (2001).CrossRefGoogle Scholar
  10. 10.
    H. Imahori, H. Norieda, H. Yamada, Y. Nishimura, I. Yamazaki, Y. Sakata, S. Fukuzumi, J. Am. Chem. Soc., 123, 100–110 (2001).CrossRefGoogle Scholar
  11. 11.
    B. Durbertret, M. Calame, A. J. Libchaber, Nat. Biotechnol., 19, 365–370 (2001).CrossRefGoogle Scholar
  12. 12.
    N. Goutev, M. Futamata, Appl. Spectrosc., 57, 506–513 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    J. Zhang, J. Zhao, H. X. He, H. L. Li, Z. F. Liu, Thin Solid Film, 327–329, 287–290 (1998).CrossRefGoogle Scholar
  14. 14.
    T. R. Jensen, R. P. Van Duync, S. A. Johnson, V. A. Maroni, Appl. Spectrosc., 54, 371–377 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    M. Osawa, M. Ikeda, J. Phys. Chem., 95, 9914–9919 (1991).CrossRefGoogle Scholar
  16. 16.
    E. Johnson, R. Aroca, J. Phys. Chem., 99, 9325–9330 (1995).CrossRefGoogle Scholar
  17. 17.
    A. Hatta, T. Ohshima, W. Suetaka, Appl. Phys., A, 29, 71–75 (1982).Google Scholar
  18. 18.
    R. Aroca, S.R. Llorente, J. Mol. Struct., 408/409, 17–22 (1997).CrossRefGoogle Scholar
  19. 19.
    S.-J.Huo, X.-K. Xue, Q.-X. Li, S.-F. Xu, W.-B. Cai, J. Phys. Chem., B110, 25721–25728 (2006).Google Scholar
  20. 20.
    B.-B. Huang, J.-Y. Wang, S.-J. Huo, W.-B. Cai, Surf. Interface Anal., 40, 81–84 (2008).CrossRefGoogle Scholar
  21. 21.
    S. Badilescu, P. V. Ashrit, V. Truong, I. I. Badilescu, Appl. Spectrosc., 43, 549–552 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, V. Ramakrishnan, J. Fluoresc., 18, 1139–1149 (2008).CrossRefGoogle Scholar
  23. 23.
    F. A. J. Kerdesky, R. J. Ardecky, M. V. Lakshmikantham, M. P. Cava, J. Am. Chem. Soc., 103, 1992–1996 (1981).CrossRefGoogle Scholar
  24. 24.
    C. F. Bohren, D. F. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York (1983).Google Scholar
  25. 25.
    S. Link, M. A. El-Sayed, O. Annu, Rev. Phys. Chem., 54, 331–366 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    J. C. Valmalette, L. Lemaire, G. L. Hornyak, J. Dutta, H. Hofmann, Anal. Mag., 24, m23–m25 (1996).Google Scholar
  27. 27.
    J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, J. Chem. Phys., 116, 6755–6760 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    P. Dumas, R. G. Tobin, P. Richards, Surf. Sci., 171, 555–578 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    B. N. J. Persson, R. Ryberg, Phys. Rev., B, 24, 6954–6970 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    B. N. J. Persson, A. Liebsch, Surf. Sci., 110, 356–368 (1981).ADSCrossRefGoogle Scholar
  31. 31.
    M. Umadevi, V. Ramakrishnan, J. Raman Spectrosc., 34, 13–20 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    L. Guerrini, Z. Jurasekova, C. Domingo, M. Pérez-Méndez, P. Leyton, M. Campos-Vallette, J. V. Garcia-Ramos, S. Sanchez-Cortes, Plasmonics, 2, 147–156 (2007).CrossRefGoogle Scholar
  33. 33.
    R. F. Aroca, D. J. Ross, C. Domingo, Appl. Spectrosc., 58, 324A–338A (2004).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Department of PhysicsMother Teresa Women’s UniversityTamil NaduIndia
  2. 2.Laboratory of Radical Pharmaco-Chemistry, UMR CNRS 6264University of the Méditerranée, Faculty of PharmacyMarseilleFrance

Personalised recommendations