Advertisement

Journal of Applied Spectroscopy

, Volume 79, Issue 1, pp 95–103 | Cite as

Quenching of photoluminescence in cadmium selenide nanocrystals in external electric fields for different excitation photon energies

  • L. I. Gurinovich
  • M. V. Artemyev
  • A. P. Stupak
  • S. Ya. Prislopskii
  • S. V. Zhukovsky
  • S. V. Gaponenko
Article

The effect of external electric fields on the photoluminescence of quantum-sized nanocrystals of cadmium selenide excited by photons of various energies is studied. Photoluminescence quenching by external electric fields is found to be different for nanoparticles with different shapes (quantum dots and nanorods) and does not depend on the exciting photon energy. The relationship between the strength of the external electric field and the degree of quenching is determined empirically for both types of nanoparticles. A possible mechanism for the effect of an external electric field on the excitation and quenching of photoluminescence in quantumsized nanoparticles is discussed.

Keywords

quantum dots nanorods cadmium selenide photoluminescence excitation electric field Stark effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge University Press (1998).Google Scholar
  2. 2.
    S. V. Gaponenko, U. Woggon, M. V. Artem’ev, L. I. Gurinovich, N. V. Gaponenko, I. S. Molchan, and A. A. Lyutich, High efficiency narrowly directed light converter, Eurasian patent No. 010503 (2008).Google Scholar
  3. 3.
    A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, and U. Banin, ACS Nano, 4, 5962–5968 (2010).CrossRefGoogle Scholar
  4. 4.
    D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, App. Phys. Lett., 87, 213505 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    S. Nizamoglu, and H. V. Demir, Opt. Express, 16, 13961–13968 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    M. Soreni-Harari, N. Yaacobi-Gross, D. Steiner, A. Aharoni, U. Banin, O. Millo, and N. Tessler, Nano Lett., 8, 678–684 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    R. Gill, I. Willner, I. Shweky, and U. Banin, J. Phys. Chem. B, 109, 23715–23719 (2005).CrossRefGoogle Scholar
  8. 8.
    L. I. Gurinovich, A. A. Lyutich, A. P. Stupak, M. V. Artem’ev, and S. V. Gaponenko, Zh. Prikl. Spektrosk., 77, 129–135 (2010).Google Scholar
  9. 9.
    L. I. Gurinovich, A. A. Lyutich, A. P. Stupak, S. Ya. Prislopskii, E. K. Rusakov, M. V. Artem’ev, S. V. Gaponenko, and H. V. Demir, FTP, 43, 1045–1053 (2009).Google Scholar
  10. 10.
    M. V. Artemyev, U. Woggon, H. Jaschinski, L. I. Gurinovich, and S. V. Gaponenko, J. Phys. Chem. B, 104, 11617–11621 (2000).CrossRefGoogle Scholar
  11. 11.
    V. L. Colvin, K. L. Cunningham, and A. P. Alivisatos, J. Chem. Phys., 101, 7122–7138 (1994).Google Scholar
  12. 12.
    K. L. Stokes, and P. D. Persans, Phys. Rev. B, 54, 4460–4463 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    E. J. D. Klem, L. Levina, and E. H. Sargent, Appl. Phys. Lett., 87, 053101-1–053101-3 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    F. Hache, D. Ricard, and C. Flytzanis, Appl. Phys. Lett., 55, 1504–1506 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Ekimov, Al. L. Efros, T. V. Shubina, and A. P. Skvortsov, J. Lumin., 46, 97–100 (1990).CrossRefGoogle Scholar
  16. 16.
    S. A. Empedocles, and M. G. Bawendi, Science, 278, 2114–2117 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    E. Rothenberg, T. Mokari, M. Kazes, U. Banin, D. Katz, D. Steiner, and O. Millo, Israel J. Chem., 44, 391–400 (2004).CrossRefGoogle Scholar
  18. 18.
    D. Steiner, D. Katz, O. Millo, A. Aharoni, S. Kan, T. Mokari, and U. Banin, Nano Lett., 4, 1073–1077 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    O. Millo, D. Katz, D. Steiner, E. Rothenberg, T. Mokari, M. Kazes, and U. Banin, Nanotechnology, 15, R1–R6 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    E. Rothenberg, M. Kazes, E. Shaviv, and U. Banin, Nano Lett., 5, 1581–1586 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    V. P. Gribkovskii, Theory of Optical Absorption and Emission in Semiconductors [in Russian], Nauka i tekhnika, Minsk (1975).Google Scholar
  22. 22.
    M. Nirmal, and L. Brus, Acc. Chem. Res., 32, 407–414 (1999).CrossRefGoogle Scholar
  23. 23.
    A. N. Georgobiani, and M. K. Sheinkman, eds., Physics of AIIBVI Compounds [in Russian], Nauka, Moscow (1986), pp. 105–145.Google Scholar
  24. 24.
    L. I. Gurinovich, M. V. Artem’ev, A. P. Stupak, S. Ya. Prislopskii, S. V. Gaponenko, Zh. Prikl. Spektrosk., 78, 893–900 (2011).Google Scholar
  25. 25.
    E. V. Klyachkovskaya, S. V. Vashchenko, A. P. Stupak, and S. V. Gaponenko, Zh. Prikl. Spektr. 77, 793–796 (2010).Google Scholar
  26. 26.
    V. M. Galitskii, B. M. Karnakov, and V. I. Kogan, Problems in Quantum Mechanics, a textbook in two parts [in Russian], 3 rd revised ed., Editorial URSS, Moscow (2001), vol. 1, pp. 49–50.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • L. I. Gurinovich
    • 1
  • M. V. Artemyev
    • 2
  • A. P. Stupak
    • 1
  • S. Ya. Prislopskii
    • 1
  • S. V. Zhukovsky
    • 1
    • 3
  • S. V. Gaponenko
    • 1
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Scientific-research Institute of Physical and Chemical ProblemsBelarusian State UniversityMinskBelarus
  3. 3.University of TorontoOntarioCanada

Personalised recommendations