Advertisement

Journal of Applied Spectroscopy

, Volume 78, Issue 6, pp 884–891 | Cite as

Fluorescence of aqueous solutions of commercial humic products

  • O. Yu. Gosteva
  • A. A. Izosimov
  • S. V. Patsaeva
  • V. I. Yuzhakov
  • O. S. Yakimenko
Article

We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

Keywords

humic products high molecular weight polymers absorption fluorescence fluorescence quantum yield 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Orlov, Humic Acids in Soils and the General Theory of Humification [in Russian], Izdat. MGU, Moscow (1990).Google Scholar
  2. 2.
    F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, 2nd. Ed., Wiley, New York (1994).Google Scholar
  3. 3.
    A. I. Gorovaya, D. S. Orlov, and O. V. Shcherbenko, Humic Substances. Structure, Functions, Mechanism of Action, Protective Properties, and Ecological Role [in Russian], Naukova Dumka, Kiev (1995).Google Scholar
  4. 4.
    K. H. Tan, Humic Matter in Soil and the Environment: Principles and Controversies, CRC Press, New York (2003).CrossRefGoogle Scholar
  5. 5.
    I. V. Perminova and D. M. Zhilin, “Humic substances in the Green Chemistry context,” in: Green Chemistry in Russia [in Russian], Izdat. Mosk. Univ., Moscow (2004), pp. 146–162.Google Scholar
  6. 6.
    D. S. Orlov, Sorosov. Obrazovat. Zh., No. 3, 65–74 (1996).Google Scholar
  7. 7.
    I. V. Perminova, Khimiya i Zhizn’, No. 1, 50–55 (2008).Google Scholar
  8. 8.
    N. A. Kulikova, “Protective effect of humic substances for plants in aqueous and soil environments under abiotic stress conditions,” Dissertation in competition for the academic degree of Doctor of Biological Sciences, Moscow (2008).Google Scholar
  9. 9.
    O. S. Yakimenko, Proceedings, Second International Scientific and Practical Conference on Earthworms and Soil Fertility, Vladimir, 17–20 March 2004, Izdat. X-PRESS, Vladimir (2004), pp. 249-252.Google Scholar
  10. 10.
    J. C. Lobartini, K. H. Tan, J. A. Rema, A. R. Gingle, and D. S. Himmelsbach, Sci. Total Environ., 113, No. 1/3, 1–15 (1992).Google Scholar
  11. 11.
    S. V. Patsaeva, V. V. Fadeev, E. M. Filippova, V. V. Chubarov, and V. I. Yuzhakov, Vestn. Mosk. Univ., Ser. 3, Fizika. Astronomiya, 32, No. 6, 71–75 (1991).Google Scholar
  12. 12.
    Z. Zsolnay, E. Baigar, M. Jimenez, B. Steinweg, and F. Saccomandi, Chemosphere, 38, No. 1, 45–50 (1999).CrossRefGoogle Scholar
  13. 13.
    O. M. Gorshkova, S. V. Patsaeva, E. V. Fedoseeva, D. M. Shubina, and V. I. Yuzhakov, Voda: Khimiya i Ékologiya, No. 11, 31–39 (2009).Google Scholar
  14. 14.
    A. S. Milyukov, S. V. Patsaeva, V. I. Yuzhakov, O. M. Gorshkova, and E. M. Prashchikina, Vestn. Mosk. Univ., Ser. 3, Fizika. Astronomiya, No. 6, 34–38 (2007).Google Scholar
  15. 15.
    O. Donard, M. Lamotte, C. Belin, and M. Ewald, Marine Chemistry, 27, No. 1–2, 117–136 (1989).CrossRefGoogle Scholar
  16. 16.
    D. Shubina, E. Fedoseeva, O. Gorshkova, S. Patsaeva, V. Terekhova, M. Timofeev, and V. Yuzhakov, EARSeL Proc., 9, No. 1, 13–21 (2010).Google Scholar
  17. 17.
    O. S. Yakimenko and P. A. Volkov, Proceedings, Fourth International Conference on Humic Substances in the Biosphere, Moscow, 19–21 December 2007, Izdat. SPbGU, St. Petersburg (2007), pp. 548–552.Google Scholar
  18. 18.
    N. Senesi, T. Miano, M. Provenzano, and G. Brunetti, Soil. Sci., 152, No. 4, 259–271 (1991).CrossRefGoogle Scholar
  19. 19.
    J. J. Mobed, S. L. Hemmingsen, J. L. Autry, and L. B. McGown, Env. Sci. & Technol., 30, No. 10, 3061–3065 (1996).CrossRefGoogle Scholar
  20. 20.
    J. Alberts and M. Takács, Org. Geochem., 35, No. 3, 243–356 (2004).CrossRefGoogle Scholar
  21. 21.
    P. Fu, F. Wu, and C. Liu, Chin. J. Geochem., 23, No. 4, 309–318 (2004).CrossRefGoogle Scholar
  22. 22.
    S. L. Hemmingsen and L. B. McGown, Appl. Spectrosc., 51, No. 7, 921–929 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    R. Malcolm and P. MacCarthy, Env. Sci. & Technol., 20, 904–911 (1986).CrossRefGoogle Scholar
  24. 24.
    D. M. Shubina, O. S. Yakimenko, S. V. Patsaeva, A. A. Izosimov, V. A. Terekhova, E. V. Fedoseeva, and V. I. Yuzhakov, Voda: Khimiya i Ékologiya, No. 2, 22–26 (2010).Google Scholar
  25. 25.
    D. M. Shubina, O. S. Yakimenko, S. V. Patsaeva, A. A. Izosimov, V. A. Terekhova, E. V. Fedoseeva, and V. I. Yuzhakov,Voda: Khimiya i Ékologiya, No. 3, 21–25 (2010).Google Scholar
  26. 26.
    D. S. Orlov and L. A. Grishina, Humus Chemistry Laboratory Manual [in Russian], Izdat. MGU, Moscow (1981).Google Scholar
  27. 27.
    D. F. Eaton, Pure Appl. Chem., 60, No. 7, 1107–1114 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • O. Yu. Gosteva
    • 1
  • A. A. Izosimov
    • 1
  • S. V. Patsaeva
    • 1
  • V. I. Yuzhakov
    • 1
  • O. S. Yakimenko
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations