Advertisement

Journal of Applied Spectroscopy

, Volume 78, Issue 6, pp 811–816 | Cite as

Amplified luminescence in InGaAs/AlGaAs laser diode arrays at high pump levels

  • M. V. Bogdanovich
  • V. V. Kabanov
  • Y. V. Lebiadok
  • A. A. Ramanenka
  • A. G. Ryabtsev
  • G. I. Ryabtsev
  • M. A. Shchemelev
  • S. K. Mehta
Article

The development of amplified luminescence fluxes in powerful InGaAs/AlGaAs laser diode arrays (lasing wavelength 940–960 nm) has been studied experimentally and theoretically at pump levels above the threshold value. Flux density values for amplified luminescence propagation along (1.88⋅109 W/m2) and across (1.21⋅109 W/m2) the laser diode array cavity axis have been evaluated for the threshold pump level at room temperature (293 K). The contribution of the recombination rate induced by the amplified luminescence to the threshold current generation of the laser diode array reaches 7%. It has been shown that the amplified luminescence flux density is increased by 49% as the pump level rises from one to three threshold values.

Keywords

loss coefficient laser diode array amplified luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Kabanov, E. V. Lebiadok, A. A. Ramanenka, A. G. Ryabtsev, G. I. Ryabtsev, A. S. Smal, and S. K. Mehta, Zh. Prikl. Spektrosk., 77, No. 6, 874–881 (2010).Google Scholar
  2. 2.
    V. V. Kabanov, E. V. Lebiadok, A. A. Ramanenka, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, and S. K. Mehta, Kvantovaya Élektron. (Moscow), 41, 95–98 (2011).CrossRefGoogle Scholar
  3. 3.
    G. I. Ryabtsev and A. S. Smal, Zh. Prikl. Spektrosk., 70, No. 4, 490–495 (2003).Google Scholar
  4. 4.
    A. A. Afonenko, V. K. Kononenko, and I. S. Manak, Theory of Semiconducting Lasers [in Russian], Izd. BGU, Minsk (1995), pp. 14–17, 68–69.Google Scholar
  5. 5.
    T. Suhara, Semiconductor Laser Fundamentals, Marcel Dekker Inc., New York (2004), p. 63.CrossRefGoogle Scholar
  6. 6.
    L. I. Burov, S. G. Rusov, A. G. Ryabtsev, V. A. Savva, A. S. Smal, G. I. Ryabtsev, V. A. Savva, and S. G. Rusov, Nonlinear Phenomena in Complex Systems, 7, 273–276 (2004).Google Scholar
  7. 7.
    G. R. Hadley, J. P. Hohimer, and A. Owyoung, IEEE J. Quantum Electron., 24, 2138–2152 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    A. M. Samson, Zh. Prikl. Spektrosk., 2, No. 3, 232–242 (1965).Google Scholar
  9. 9.
    V. A. Zyul’kov, G. I. Ryabtsev, and V. A. Samoilyukovich, Zh. Prikl. Spektrosk., 21, No. 2, 337–338 (1974).ADSGoogle Scholar
  10. 10.
    H. S. Sommers and D. O. North, Solid-State Electron., 19, 675–699 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • M. V. Bogdanovich
    • 1
  • V. V. Kabanov
    • 1
  • Y. V. Lebiadok
    • 1
  • A. A. Ramanenka
    • 1
  • A. G. Ryabtsev
    • 2
  • G. I. Ryabtsev
    • 1
  • M. A. Shchemelev
    • 2
  • S. K. Mehta
    • 3
  1. 1.B. I. Stepanov Institute of Physics, National Academy of Sciences of BelarusMinskBelarus
  2. 2.Belarusian State UniversityMinskBelarus
  3. 3.Solid State Physics LaboratoryDelhiIndia

Personalised recommendations