Journal of Applied Spectroscopy

, Volume 78, Issue 5, pp 698–704 | Cite as

Laser-induced fluorescence monitoring of the gas phase in a glow discharge during reactive sputtering of vanadium

  • V. A. Khvostikov
  • S. S. Grazhulene
  • Zh. P. Burmii
  • V. A. Marchenko

Processes in the gas phase of a glow discharge during diode and magnetron reactive sputtering of vanadium in an Ar–O2 atmosphere have been investigated by laser-induced fluorescence (LIF) as a function of the parameters of the glow discharge and the composition of the atmosphere. The intensity of the fluorescence spectra increased by 1.5–2.0 orders of magnitude in the magnetron sputtering process compared with that of diode sputtering. Under continuous sputtering conditions, the dependences of the intensities and relative compositions of the fluorescence spectra on the discharge parameters (discharge voltage and current) have been investigated. In pulsed mode of the glow discharge, the dynamics of changes in the spectra have been studied versus variations in the discharge duration and the lag time for recording the fluorescence signal. The dependence of the spectral line intensities on the partial pressure of oxygen has been found for vanadium and its oxide. The cathode surface at pressures of 0.03–0.04 Pa was shown to convert to the oxidized state.


laser-induced fluorescence spectroscopy glow discharge reactive diode and magnetron cathode sputtering molecular spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Marchenko, Prikl. Fiz., No. 1, 35–39 (2008).Google Scholar
  2. 2.
    D. Y. Wang, P. Yun, Y. Wang, H. L. W. Chan, and C. L. Choy, Thin Solid Films, 517, 2092–2098 (2009).CrossRefADSGoogle Scholar
  3. 3.
    D. Pamu, K. Sudheendran, M. G. Krishna, K. C. J. Raju, and A. K. Bhatnagar, Thin Solid Films, 517, 1587–1591 (2009).CrossRefADSGoogle Scholar
  4. 4.
    R. O. Dillon, K. Le, and N. Ianno, Thin Solid Films, 398–399, 10–16 (2001).CrossRefGoogle Scholar
  5. 5.
    Y. M. Kim, Y. M. Chung, M. J. Jung, J. Vlcek, J. Musil, and J. G. Han, Surf. Coat. Technol., 200, 835–840 (2005).CrossRefADSGoogle Scholar
  6. 6.
    F. Perry, A. Billard, and C. Frantz, Surf. Coat. Technol., 94–95, 681–685 (1997).CrossRefGoogle Scholar
  7. 7.
    Y. M. Kim, M. J. Jung, S. G. Oh, and J. G. Han, Thin Solid Films, 475, 91–96 (2005).CrossRefADSGoogle Scholar
  8. 8.
    B. Liebig, N. St. J. Braithwaite, P. J. Kelly, and J. W. Bradley, Thin Solid Films, 519, 1699–1700 (2010).CrossRefADSGoogle Scholar
  9. 9.
    B. Fernandez, N. Bordel, C. Perez, R. Pereiro, and A. Sanz-Medel, J. Anal. At. Spectrom., 17, 1549–1555 (2002).CrossRefGoogle Scholar
  10. 10.
    A. Martin, R. Pereiro, N. Bordel, and A. Sanz-Medel, Spectrochim. Acta, Part B, 63, 692–699 (2008).CrossRefADSGoogle Scholar
  11. 11.
    M. Misina, J. W. Bradley, H. Backer, Y. Aranda-Gonzalvo, S. K. Karkari, and D. Forder, Vacuum, 68, 171–181 (2002).CrossRefGoogle Scholar
  12. 12.
    D. Depla, S. Mahieu, and R. De Gruse, Thin Solid Films, 517, 2825–2839 (2009).CrossRefADSGoogle Scholar
  13. 13.
    V. A. Khvostikov and S. S. Grazhulene, Zh. Prikl. Spektrosk., 76, No. 6, 869–875 (2009).Google Scholar
  14. 14.
    S. Grazhulene, V. Khvostikov, and M. Sorokin, Spectrochim. Acta, Part B, 46, No. 4, 459–465 (1991).CrossRefADSGoogle Scholar
  15. 15.
    B. S. Danilin and V. K. Syrchin, Magnetron Sputtering Systems [in Russian], Radio i Svyaz’, Moscow (1982).Google Scholar
  16. 16.
    A. N. Zaidl’ and V. K. Prokof’ev, Tables of Spectral Lines [in Russian], Nauka, Moscow (1977).Google Scholar
  17. 17.
    R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra, London (1941).Google Scholar
  18. 18.
    V. A. Marchenko, Izv. Ross. Akad. Nauk, Ser. Fiz., 73, No. 7, 920–923 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • V. A. Khvostikov
    • 1
  • S. S. Grazhulene
    • 1
  • Zh. P. Burmii
    • 1
  • V. A. Marchenko
    • 1
  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations