Stationary generation of diode-pumped self-Raman Nd:YVO4/YVO4 composite crystal laser

  • P. A. Apanasevich
  • A. A. Kananovich
  • A. A. Demidovich
  • M. B. Danailov
  • V. A. Orlovich

Output power dependences of composite Nd3+:YVO4 Raman laser stationary generation on the longitudinal diode pump power are measured at different transmissions of the output mirror at the Stokes radiation frequency. The deviation of the measured dependences from linear is explained by the influence of thermal effects on both the overlap of the beams and diffraction losses. A method to estimate the laser and Stokes losses in the cavity and the parameters characterizing the overlap of the laser radiation with the pump and Stokes beams is proposed. A Stokes-component of power 2.1 W is obtained and corresponds to 12% diode-to-Stokes efficiency.


Raman conversion Raman laser Nd:YVO4 longitudinal diode pump thermal effects 


  1. 1.
    A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, Opt. Lett., 30, 1701–1703 (2005).CrossRefADSGoogle Scholar
  2. 2.
    H. Pask, Opt. Lett., 30, 2454–2456 (2005).CrossRefADSGoogle Scholar
  3. 3.
    V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, Appl. Phys. B: Lasers Opt., 86, 511–514 (2007).CrossRefADSGoogle Scholar
  4. 4.
    A. J. Lee, H. M. Pask, T. Omatsu, P. Dekker, and J. A. Piper, Appl. Phys. B: Lasers Opt., 88, 539–544 (2007).CrossRefADSGoogle Scholar
  5. 5.
    P. Dekker, H. Pask, D. Spence, and J. Piper, Opt. Express, 15, 7038–7046 (2007).CrossRefADSGoogle Scholar
  6. 6.
    V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P.-Y. Turpin, Laser Phys. Lett., 3, 71–74 (2006).CrossRefADSGoogle Scholar
  7. 7.
    P. Dekker, H. Pask, and J. Piper, Opt. Lett., 32, 1114–1116 (2007).CrossRefADSGoogle Scholar
  8. 8.
    L. Fan, Y. Fan, Y. Duan, Q. Wang, H. T .Wang, G. H. Jin, and C. Y. Tu, Appl. Phys. B: Lasers Opt., 94, 553–557 (2009).CrossRefADSGoogle Scholar
  9. 9.
    L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, Opt. Lett., 34, 1687–1689 (2009).CrossRefADSGoogle Scholar
  10. 10.
    P. A. Apanasevich, A. A. Kananovich, and G. I. Timofeeva, Zh. Prikl. Spektrosk., 77, No. 2, 241–248 (2010).Google Scholar
  11. 11.
    W. Koechner, Solid-State Laser Engineering, Springer Verlag, Berlin (2006).Google Scholar
  12. 12.
    M. Innocenzi, H. Yura, C. Fincher, and R. Fields, Appl. Phys. Lett., 56, 1831–1833 (1990).CrossRefADSGoogle Scholar
  13. 13.
    W. Clarkson, J. Phys. D: Appl. Phys., 34, 2381–2395 (2001).CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kir’yanov, and M. J. Damzen, Opt. Commun., 210, 75–82 (1990).CrossRefADSGoogle Scholar
  15. 15.
    N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications, Springer Verlag, Berlin (2005).Google Scholar
  16. 16.
    D. Cofter, D. C. Hanna, and R. Wyaff, Appl. Phys., 8, 333–340 (1975).CrossRefADSGoogle Scholar
  17. 17.
    P. A. Apanasevich and G. I. Timofeeva, Zh. Prikl. Spektrosk., 74, No. 2, 230–236 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • P. A. Apanasevich
    • 1
  • A. A. Kananovich
    • 1
  • A. A. Demidovich
    • 2
  • M. B. Danailov
    • 2
  • V. A. Orlovich
    • 1
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.LaserLab ELETTRA-SincrotoneTriesteItaly

Personalised recommendations