Advertisement

Journal of Applied Spectroscopy

, Volume 77, Issue 6, pp 857–868 | Cite as

Aggregate color center formation processes in lithium fluoride crystals after irradiation

  • A. P. Voitovich
  • M. V. Voitikova
  • V. S. Kalinov
  • E. F. Martynovich
  • A. N. Novikov
  • L. P. Runets
  • A. P. Stupak
  • R. M. Montereali
  • G. Baldacchini
Article

Lithium fluoride crystals were irradiated by different doses of gamma photons at a temperature of 77 K. We measured the aggregation kinetics for the color centers with different annealing temperatures above the temperature of anion vacancy mobility. We show that the lifetimes of the vacancies decrease while the lifetimes of the \( F_2^{+} \) centers increase as the irradiation dose increases. We explain these types of dependences based on the aggregation processes for color centers in the post-radiation period. We determine the time constants and energies (analogous to activation energies in the Arrhenius equation) for the various processes involving rise and fall in the concentration of aggregate color centers. Based on the experimental data obtained, we have established the processes forming F 2 and \( F_3^{+} \) centers in the post-radiation period. The F 2 centers are formed when vacancies νa add to \( F_1^{-} \) centers. Vacancies arising during irradiation of the crystal participate in their creation in the first fast stage. In the long final stage, vacancies are used which appear in the post-radiation period on occurrence of the reaction \( F_2^{+} \) + H → νa + fluoride ion at the lattice site, where H is an interstitial fluorine atom. The \( F_3^{+} \) centers are formed both by merging \( F_2^{+} \) and F 1 centers and as a result of addition of vacancies to F 2 centers. In this case, vacancies are used that are generated not only during irradiation of the crystal but also in the post-radiation period. The rise in the concentration of \( F_3^{+} \) centers occurs faster than the rise in the concentration of F 2 centers.

Keywords

lithium fluoride anion vacancies color center lifetime activation energy temporal aggregation kinetics aggregation processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. L. McLaughlin, A. Miller, S. C. Ellis, A. C. Lucas, and B. M. Kapsar, Nucl. Instr. Methods Phys. Res., 175, No. 1, 17–18 (1980).CrossRefGoogle Scholar
  2. 2.
    A. R. Lakshmanan, U. Madhusoodanan, A. Natarajan, and B. S. Panigrahy, Phys. Status Solidi (a), 153, No. 1, 265–273 (1996).CrossRefADSGoogle Scholar
  3. 3.
    T. T. Basiev, P. G. Zverev, and S. B. Mirov, in: C. E. Webb and J. D. C. Jones, Handbook of Laser Technology and Applications, Taylor & Francis Group — CRC Press, Boca Raton (2003), pp. 499–522.Google Scholar
  4. 4.
    A. P. Voitovich, L. C. Scavarda do Carmo, V. S. Kalinov, and A. V. Saltanov, Dokl. Akad. Nauk BSSR, 34, No. 1, 21–23 (1990).Google Scholar
  5. 5.
    R. M. Montereali, in: H. S. Nalwa, ed., Handbook of Thin Film Materials, Academic Press, New York (2002), Vol. 3, pp. 399–431.CrossRefGoogle Scholar
  6. 6.
    T. Kurobori, K. Kawamura, M. Hirano, and H. Hosono, J. Phys.: Condens. Matter, 15, No. 25, L399–L405 (2003).CrossRefADSGoogle Scholar
  7. 7.
    A. P. Voitovich, V. S. Kalinov, Yu. V. Loiko, N. N. Naumenko, L. P. Runets, and A. P. Stupak, Zh. Prikl. Spektrosk., 75, No. 1, 102–110 (2008).Google Scholar
  8. 8.
    A. Kovacs, M. Baranyai, W. L. McLaughlin, S. D. Miller, A. Miller, P. G. Fuochi, M. Lavalle, and I. Slezsak, Rad. Phys. Chem., 57, No. 3–6, 691–695 (2000).CrossRefADSGoogle Scholar
  9. 9.
    S. Almaviva, M. Marinelli, E. Milani, G. Prestopino, A. Tucciarone, C. Verona-Rinati, M. Angelone, D. Lattanzi, M. Pillon, R. M. Montereali, and M. A. Vincenti, J. Appl. Phys., 103, 54501–1-6 (2008).CrossRefGoogle Scholar
  10. 10.
    T. T. Basiev, V. V. Voronov, V. A. Konyushkin, S. V. Kuznetsov, S. V. Lavrishchev, V. V. Osiko, P. P. Fedorov, A. B. Ankudinov, and M. I. Alymov, Dokl. Rossk. Akad. Nauk, 417, No. 5, 635–638 (2007).Google Scholar
  11. 11.
    J. Nahum and D. A. Wiegand, Phys. Rev., 154, No. 3, 817–830 (1967).CrossRefADSGoogle Scholar
  12. 12.
    J. Nahum, Phys. Rev., 159, No. 3, 814–825 (1967).CrossRefADSGoogle Scholar
  13. 13.
    H. Gu, L. Qi, L. Wan, and H. Guo, Opt. Commun., 70, No. 2, 141–144 (1989).CrossRefADSGoogle Scholar
  14. 14.
    L. A. Lisitsyna, Fiz. Tverd. Tela, 34, No. 9, 2694–2705 (1992).Google Scholar
  15. 15.
    V. I. Baryshnikov, T. A. Kolesnikova, and S. V. Dorokhov, Opt. Spektrosk., 89, No. 1, 70–75 (2000).CrossRefADSGoogle Scholar
  16. 16.
    L. A. Lisitsyna, Fiz. Tverd. Tela, 43, No. 1, 25–29 (2001).Google Scholar
  17. 17.
    A. P. Voitovich, V. S. Kalinov, L. P. Runets, and A. P. Stupak, Izv. Vuzov. Fizika, No. 12(3), 71–77 (2009).Google Scholar
  18. 18.
    A. P. Voitovich, V. S. Kalinov, N. N. Naumenko, L. P. Runets, and A. P. Stupak, Zh. Prikl. Spektrosk., 77, No. 2, 266–273 (2010).Google Scholar
  19. 19.
    G. Baldacchini, R. M. Montereali, E. Nichelatti, V. S. Kalinov, A. P. Voitovich, A. T. Davidson, and A. G. Kozakiewicz, J. Appl. Phys., 104, 063712–1-10 (2008).CrossRefGoogle Scholar
  20. 20.
    A. G. Stromberg and D. N. Semchenko, Physical Chemistry [in Russian], Vysshaya Shkola, Moscow (1988), pp. 313–315.Google Scholar
  21. 21.
    A. P. Voitovich, V. S. Kalinov, S. A. Mikhnov, and S. I. Ovseichuk, Kvant. Élektron., 14, No. 6, 1225–1229 (1987).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • A. P. Voitovich
    • 1
  • M. V. Voitikova
    • 1
  • V. S. Kalinov
    • 1
  • E. F. Martynovich
    • 2
  • A. N. Novikov
    • 1
  • L. P. Runets
    • 1
  • A. P. Stupak
    • 1
  • R. M. Montereali
    • 3
  • G. Baldacchini
    • 3
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Irkutsk Branch of the Institute of Laser PhysicsSiberian Branch of the Russian Academy of SciencesMoscowRussia
  3. 3.Advanced Physical Technologies and New Materials DepartmentENEA-Frascati Reearch CenterRomeItaly

Personalised recommendations