Advertisement

Journal of Applied Spectroscopy

, Volume 77, Issue 6, pp 823–826 | Cite as

Parameters of the collisionally broadened R22 absorption line of the 1000–0001 transition of the CO2 molecule

  • K. I. Arshinov
  • M. K. Arshinov
  • V. V. Nevdakh
Article

A frequency stabilized, tuneable CO2 laser is used to measure the unsaturated absorption coefficients of pure carbon dioxide gas at pressures of 1 and 100 Torr and temperatures of 296–700 K. The radiative transition probability and the temperature dependence of the collisional self-broadening coefficient are determined for the R22 absorption line of the 1000-0001 transition of the CO2 molecule. The exponent on the temperature is found to depend on the method used to determine the collisional self-broadening coefficient.

Keywords

absorption coefficient carbon dioxide collisional self-broadening of spectrum lines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. M. Smirnov, UFN, 126, 527–530 (1978).Google Scholar
  2. 2.
    O. V. Achasov, N. N. Kudryavtsev, S. S. Novikov, R. I. Soloukhin, and N. A. Fomin, Diagnostics of Nonequilibrium States in Molecular Lasers [in Russian], Nauka i tekhnika, Minsk (1985), pp. 35–47.Google Scholar
  3. 3.
    V. I. Starikov and N. N. Lavrent’eva, Collisional Broadening of Absorption Spectrum Lines of Molecular Atmospheric Gases [in Russian], izd-vo. In-ta. optiki atmosfery SO RAN (2006), pp. 222–224.Google Scholar
  4. 4.
    V. V. Artem’ev, K. I. Arshinov, N. S. Leshenyuk, and V. V. Nevdakh, Opt. Spektrosk., 96, 1004–1008 (2004).Google Scholar
  5. 5.
    K. I. Arshinov, M. K. Arshinov, V. V. Nevdakh, M. I. Peen, A. Sof’yani, and V. V. Yasnov, Zh. Prikl. Spektrosk., 74, 810–815 (2007).Google Scholar
  6. 6.
    W. Wittman, The CO 2 Laser [Russian translation], Mir, Moscow (1990), pp. 70–101.Google Scholar
  7. 7.
    S. N. Andreev, V. N. Ochkin, and S. Yu. Savinov, Kvant. Élektron., 32, 647–653 (2002).CrossRefGoogle Scholar
  8. 8.
    L. Rosenmann, M. Y. Perrin, and J. Taine, J. Chem. Phys., 88, 2995–2998 (1988).CrossRefADSGoogle Scholar
  9. 9.
    K. I. Arshinov and N. S. Leshenyuk, Kvant. Élektron., 24, 517–518 (1997).Google Scholar
  10. 10.
    M. A. El’yashevich, Atomic and Molecular Spectroscopy [in Russian], GIFML (1962), pp. 117–139.Google Scholar
  11. 11.
    A. S. Biryukov, A. Yu. Volkov, E. M. Kudryavtsev, and R. I. Serikov, Kvant. Élektron., 3, 1748–1754 (1976).Google Scholar
  12. 12.
    V. V. Nevdakh, Kvant. Élektron., 11, 1622–1627 (1984).Google Scholar
  13. 13.
    K. I. Arshinov, N. S. Leshenyuk, and V. V. Nevdakh, Kvant. Élektron., 25, 679–682 (1998).Google Scholar
  14. 14.
    K. I. Arshinov, N. G. Kablukov, and F. V. Tikhonov, PTÉ, No. 1, 103–109 (1996).Google Scholar
  15. 15.
    K. I. Arshinov, N. G. Kablukov, and N. S. Leshenyuk, PTÉ, No. 1, 237–238 (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • K. I. Arshinov
    • 1
  • M. K. Arshinov
    • 1
  • V. V. Nevdakh
    • 2
  1. 1.Institute of Technical AcousticsNational Academy of Sciences of BelarusVitebskBelarus
  2. 2.Belarusian National Technical UniversityMinskBelarus

Personalised recommendations