Journal of Applied Spectroscopy

, Volume 77, Issue 5, pp 663–667 | Cite as

Luminescence of lead sulfide nanocrystals in a silicate glass matrix

  • M. S. Gaponenko
  • K. V. Yumashev
  • A. A. Onushchenko

Luminescence of lead sulfide (PbS) nanocrystals with mean diameter 6 nm in a silicate glass matrix that emit in wavelength region 1.5 μm (0.827 eV) is studied. The average luminescence decay time is estimated to be 2.7 μs. Decreasing the temperature is shown to result in a shift of the emission spectrum to lower energies with a corresponding temperature coefficient of 64 μeV/K. Anti-Stokes luminescence of the PbS nanocrystals is detected with a spectral shift of 45 meV for the emission band maximum relative to the excitation energy.


nanocrystal lead sulfide luminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. J. Brus, J. Chem. Phys., 80, 4403–4407 (1984).CrossRefADSGoogle Scholar
  2. 2.
    A. P. Alivisatos, Science, 271, 933–937 (1996).CrossRefADSGoogle Scholar
  3. 3.
    A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, Solid State Commun., 56, 921–924 (1985).CrossRefADSGoogle Scholar
  4. 4.
    M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science, 281, 2013–2016 (1998).CrossRefADSGoogle Scholar
  5. 5.
    W. J. M. Mulder, R. Koole, R. J. Brandwijk, G. Storm, P. T. K. Chin, G. J. Strijkers, C. de M. Donega, K. Nicolay, and A. W. Griffioen, Nano Lett., 6, 1–6 (2006).CrossRefADSGoogle Scholar
  6. 6.
    D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, Science, 300, 1434–1436 (2003).CrossRefADSGoogle Scholar
  7. 7.
    F. Wang, W. B. Tau, Y. Zhang, X. Fan, and M. Wang, Nanotechnology, 17, R1–R13 (2006).CrossRefADSGoogle Scholar
  8. 8.
    X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science, 307, 538–544 (2005).CrossRefADSGoogle Scholar
  9. 9.
    B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, Science, 312, 217–224 (2006).CrossRefADSGoogle Scholar
  10. 10.
    C. de M. Donega, P. Liljeroth, and D. Vanmaekelbergh, Small, 1, 1152–1162 (2005).CrossRefGoogle Scholar
  11. 11.
    V. I. Klimov, Science, 290, 314–317 (2000).CrossRefADSGoogle Scholar
  12. 12.
    E. U. Rafailov, M. A. Cataluna, and W. Sibbett, Nat. Photonics, 1, 395–401 (2007).CrossRefADSGoogle Scholar
  13. 13.
    A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, J. Appl. Phys., 103, 081301 (2008).CrossRefADSGoogle Scholar
  14. 14.
    O. Madelung, Semiconductors: Data Handbook, 3rd Ed., Springer, Berlin (2004).Google Scholar
  15. 15.
    J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mii, R. J. Ellington, and A. J. Nozik, J. Am. Chem. Soc., 128, 3241–3247 (2006).CrossRefGoogle Scholar
  16. 16.
    A. A. Onushchenko, M. S. Gaponenko, V. V. Golubkov, A. A. Zhilin, A. M. Malyarevich, G. T. Petrovskii, E. L. Raaben, and K. V. Yumashev, Opt. Zh., 73, 4–12 (2006).Google Scholar
  17. 17.
    S. Rudin, T. L. Reinecke, and B. Segall, Phys. Rev. B: Condens. Matter Mater. Phys., 42, 11218–11231 (1990).ADSGoogle Scholar
  18. 18.
    A. Olkhovets, R. C. Hsu, A. Lipovskii, and F. W. Wise, Phys. Rev. Lett., 81, 3539–3542 (1998).CrossRefADSGoogle Scholar
  19. 19.
    A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, Phys. Rev. B: Condens. Matter Mater. Phys., 75, 035329 (2007).ADSGoogle Scholar
  20. 20.
    S. W. Clark, J. M. Harbold, and F. W. Wise, J. Phys. Chem. C, 111, 7302–7305 (2007).CrossRefGoogle Scholar
  21. 21.
    J. M. An, A. Franceschetti, and A. Zunger, Nano Lett., 7, 2129–2135 (2007).CrossRefADSGoogle Scholar
  22. 22.
    G. Allan and C. Delerue, Phys. Rev. B, 70, 245321 (2004).CrossRefADSGoogle Scholar
  23. 23.
    N. O. Dantas, F. Qu, R. S. Silva, and P. C. Morris, J. Phys. Chem. B, 106, 7453–7457 (2002).CrossRefGoogle Scholar
  24. 24.
    M. S. Gaponenko, K. V. Yumashev, A. M. Malyarevich, S. A. Tihomirov, O. V. Buganov, and A. A. Onuschenko, in: Proc. 17th Int. Symposium Nanostructures: Physics and Technology, June 22–26, 2009, Minsk, Belarus (2009), 42–43.Google Scholar
  25. 25.
    R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, Phys. Rev. Lett., 95, 196401 (2005).CrossRefADSGoogle Scholar
  26. 26.
    J. M. Harbold and F. W. Wise, Phys. Rev. B: Condens. Matter Mater. Phys., 76, 125304 (2007).ADSGoogle Scholar
  27. 27.
    H. Kamisaka, S. V. Kilina, K. Yamashita, and O. V. Prezhdo, J. Phys. Chem. C, 112, 7800–7808 (2008).CrossRefGoogle Scholar
  28. 28.
    J. J. Peterson and T. D. Krauss, Nano Lett., 6, 510–514 (2006).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • M. S. Gaponenko
    • 1
  • K. V. Yumashev
    • 1
  • A. A. Onushchenko
    • 2
  1. 1.Institute for Optical Materials and TechnologiesBelarusian National Technical UniversityMinskBelarus
  2. 2.Scientific Research and Technological Institute of Optical Material ScienceAll-Russian Research Center S. I. Vavilov State Optical InstituteSt. PetersburgRussia

Personalised recommendations