Journal of Applied Spectroscopy

, Volume 77, Issue 5, pp 626–630 | Cite as

Modeling the structure and vibrational spectra for oxouranium dichloride monomer and dimer


Structural models are designed and spectral characteristics are computed for the monomer and dimer of the oxouranium dichloride (UOCl2) molecule based on ab initio calculations. The calculations were carried out in the LANL2DZ effective core potential approximation for the uranium atom and all-electron basis sets using DFT methods for oxygen and chlorine atoms (B3LYP/cc-pVDZ). A close-to-planar Y-shaped equilibrium configuration with Cs symmetry is obtained for the UOCl2 monomer. The formation of the dimer is accompanied by both significant changes in the structure of the monomeric fragments and the actual loss of their identities. The obtained spectral characteristics are analyzed and compared with experimental data. The adequacy of the proposed models and qualitative agreement between calculation and experiment are demonstrated.


ab initio calculation effective core potential IR spectrum oxouranium dichloride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347– 1363 (1993).CrossRefGoogle Scholar
  3. 3.
    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).CrossRefGoogle Scholar
  4. 4.
    L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys., 68, 2386–2397 (1978).CrossRefADSGoogle Scholar
  5. 5.
    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).CrossRefADSGoogle Scholar
  6. 6.
  7. 7.
    D. Feller, J. Comput. Chem., 17, 1571–1586 (1996).Google Scholar
  8. 8.
    K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 47, 1045–1052 (2007).CrossRefGoogle Scholar
  9. 9.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefADSGoogle Scholar
  10. 10.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter, 37, 785–789 (1988).ADSGoogle Scholar
  11. 11.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).CrossRefGoogle Scholar
  12. 12.
    D. S. Umreiko, M. B. Shundalau, A. P. Zazhogin, and A. I. Komyak, Zh. Prikl. Spektrosk., 77, No. 4, 550–555 (2010).Google Scholar
  13. 13.
    J. C. Taylor and P. W. Wilson, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., 30, 1481–1484 (1974).CrossRefGoogle Scholar
  14. 14.
    J. C. Taylor and P. W. Wilson, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., 29, 1073–1076 (1973).CrossRefGoogle Scholar
  15. 15.
    K. Ohwada, J. Inorg. Nucl. Chem., 40, 1369–1374 (1978).CrossRefGoogle Scholar
  16. 16.
    J. C. Taylor and P. W. Wilson, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., 30, 2803–2805 (1974).CrossRefGoogle Scholar
  17. 17.
    M. Straka and M. Kaupp, Chem. Phys., 311, 45–56 (2005).CrossRefADSGoogle Scholar
  18. 18.
    L. V. Kobets, V. G. Popov, L. P. Savchenko, I. K. Skutov, and D. S. Umreiko, Koord. Khim., 4, 406–411 (1978).Google Scholar
  19. 19.
    L. V. Volod’ko, A. I. Komyak, and D. S. Umreiko, Uranium Compounds [in Russian], 1, Bel. Gos. Univ., Minsk (1981).Google Scholar
  20. 20.
    A. P. Zazhogin, A.I. Komyak, D. S. Umreiko, and S. D. Umreiko, Zh. Prikl. Spektrosk., 77, No. 2, 274–279 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • D. S. Umreiko
    • 1
  • M. B. Shundalau
    • 2
  • O. V. Trubina
    • 2
  1. 1.A. N. Sevchenko Institute of Applied Physical ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Belarusian State UniversityMinskBelarus

Personalised recommendations