Advertisement

Journal of Applied Spectroscopy

, Volume 77, Issue 4, pp 534–540 | Cite as

Kilohertz raman lasers based on bno and kgw crystals for a wide spectral range

  • A. I. Vodchits
  • D. N. Busko
  • V. A. Orlovich
  • P. A. Apanasevich
  • V. S. Gorelik
  • N. V. Tcherniega
  • A. D. Kudryavtseva
Article
  • 41 Downloads

Efficient Raman lasers based on Ba(NO3)2 and KGd(WO4)2 crystals which produce nanosecond pulses with repetition rates of 1 and 4 kHz at 26 wavelengths between 280 and 1600 nm are developed and studied. A maximum SRS conversion efficiency of 25% is obtained. It is found that the divergence of the beams generated by the Raman laser can be significantly reduced by using quasi-Bessel pump beams and an unstable telescope cavity.

Keywords

stimulated Raman scattering (SRS) Raman laser crystal pulse of radiation repetition rate thermal lensing Stokes component conversion efficiency wavelength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. M. Pask, Prog. Quantum. Electron., 27, 3–56 (2003).CrossRefADSGoogle Scholar
  2. 2.
    P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron., 28, 113–143 (2004).CrossRefADSGoogle Scholar
  3. 3.
    A. I. Vodchits, D. N. Busko, V. A. Orlovich, V. A. Lisinetskii, A. S. Grabtchikov, P. A. Apanasevich, W. Kiefer, H. J. Eichler, and P.-Y. Turpin, Opt. Commun., 272, 467–475 (2007).CrossRefADSGoogle Scholar
  4. 4.
    V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, Appl. Phys. B, 88, 499–501 (2007).CrossRefADSGoogle Scholar
  5. 5.
    A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, and A. I. Ferguson, Opt. Lett., 30, 421–423 (2005).CrossRefADSGoogle Scholar
  6. 6.
    H. Ogilvy, H. M. Pask, J. A. Piper, and T. Omatsu, Opt. Commun., 242, 575-579 (2004).CrossRefADSGoogle Scholar
  7. 7.
    J. Findeisen, H. J. Eichler, and A. A. Kaminskii, IEEE J. Quantum Electron., 35, 173-178 (1999).CrossRefADSGoogle Scholar
  8. 8.
    P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, Opt. Mater., 11, 335–352 (1999).CrossRefGoogle Scholar
  9. 9.
    P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater., 11, 315–334 (1999).CrossRefGoogle Scholar
  10. 10.
    I. V. Mochalov, Opt. Eng., 36, 1660–1669 (1997).CrossRefADSGoogle Scholar
  11. 11.
    V. A. Lisinetskii, I. I. Mishkel’, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, H. -J. Eichler, and V. A. Orlovich, J. Nonlin. Opt. Phys. Mater., 14, 1–8 (2005).CrossRefGoogle Scholar
  12. 12.
    P. G. Zverev and T. T. Basiev, Kvant. Élektron., 22, 1241–1244 (1995).Google Scholar
  13. 13.
    A. I. Vodchits, V. P. Kozich, V. A. Orlovich, and P. A. Apanasevich, Opt. Commun., 263, 304–308 (2006).CrossRefADSGoogle Scholar
  14. 14.
    N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications, Springer-Verlag London Limited, London (1997), pp. 76–104Google Scholar
  15. 15.
    J. T. Murray, W. L. Austin, and R. C. Powel, Opt. Mater., 11, 353–371 (1999).CrossRefGoogle Scholar
  16. 16.
    R. Gadonas, V. Jarutis, A. Marcinkevicius, V. Smilgevicius, A. Stabinis, and V. Vaicaitis, Opt. Commun., 169, 189–197 (1999).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. I. Vodchits
    • 1
  • D. N. Busko
    • 1
  • V. A. Orlovich
    • 1
  • P. A. Apanasevich
    • 1
  • V. S. Gorelik
    • 2
  • N. V. Tcherniega
    • 2
  • A. D. Kudryavtseva
    • 2
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskRussia
  2. 2.P. N. Lebedev Institute of PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations