Skip to main content
Log in

Analysis of fluorescence decay kinetics of thioflavin t by a maximum entropy method

  • Published:
Journal of Applied Spectroscopy Aims and scope

The application of a maximum entropy method (MEM) for analysis of time-resolved fluorescence data is discussed. A developed version of MEM has been tested using simulated kinetic data. Based on computed results, practical criteria have been established to determine whether the lifetime distribution of emitting centers is described by a discrete spectrum (a set of two or three exponentials) or by a continuous one (mono- or bimodal distribution of exponentials). The proposed method has been used to analyze the fluorescence decay kinetics of thioflavin T (ThT) intercalated into amyloid fibrils. The presence of two peaks in the lifetime distribution of emitting centers has been explained by the existence in fibrils of two types of binding centers substantially differing in microenvironment rigidity. This suggestion is supported by the results of fluorescence quenching of intercalated ThT with the quencher KI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. O’Connor and D. Phillips, Time-correlated Single Photon Counting, Academic Press, New York (1984).

    Google Scholar 

  2. W. R. Ware, in: Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology, R. B. Cundall, ed., Plenum Press, New York (1983), p. 23.

    Google Scholar 

  3. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Conditioned Problems [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  4. L. Dobrynski and A. Holas, Nucl. Instrum. Methods Phys. Res., Sect. A, 383, 589 (1996).

    Article  ADS  Google Scholar 

  5. R. D. Dyson and I. Isenberg, Biochemistry, 10, 3233–3241 (1971).

    Article  Google Scholar 

  6. A. Grinvald and I. Z. Steinberg, Anal. Biochem., 59, 583–598 (1974).

    Article  Google Scholar 

  7. S. K. Basharin, G. A. Gachko, L. N. Kivach, S. A. Maskevich, A. A. Maskevich, and V. R. Udovydchenko, Zh. Prikl. Spektrosk., 52, No. 1, 48–52 (1990).

    Google Scholar 

  8. H. P. Good, A. J. Kaller, and U. P. Wild, J. Phys. Chem., No. 22, 5435–5441 (1984).

    Article  Google Scholar 

  9. J. Sopkova, J. Gallay, M. Vincent, P. Pancoska, and A. Lewit-Bentley, Biochemistry, 33, 4490–4499 (1994).

    Article  Google Scholar 

  10. J. Sopkova, M. Vincent, M. Takahashi, A. Lewit-Bentley, and J. Gallay, Biochemistry, 37, 11962–11970 (1998).

    Article  Google Scholar 

  11. A. A. Maskevich, S. K. Basharin, G. A. Gachko, L. N. Kivach, and S. A. Maskevich, Zh. Prikl. Spektrosk., 53, No. 4, 557–563 (1990).

    Google Scholar 

  12. N. Rouviere, M. Vincent, C. T. Craescu, and J. Gallay, Biochemistry, 36, 7339–7352 (1997).

    Article  Google Scholar 

  13. E. Bismuto, G. Irace, S. D’Auria, M. Rossi, and R. Nucci, Eur. J. Biochem., 244, 53–58 (1997).

    Article  Google Scholar 

  14. J. K. A. Kamal and D. V. Behere, Biochem. Biophys. Res. Commun., 289, 427–433 (2001).

    Article  Google Scholar 

  15. J. G. McWhirter and E. R. Pike, J. Phys. A: Math. Gen., 11, 1729–1745 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Siemiarczuk, B. D. Wagner, and W. R. Ware, J. Phys. Chem., 94, 1661–1666 (1990).

    Article  Google Scholar 

  17. J.-C. Brochon, Methods Enzymol., 240, 262–311 (1994).

    Article  Google Scholar 

  18. D. R. James and W. R. Ware, Chem. Phys. Lett., 120, 455–459 (1985).

    Article  ADS  Google Scholar 

  19. G. Landl, T. Langthaler, H. W. Engl, and H. F. Kauffman, J. Comput. Phys., 95, 1–28 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. M. A. Noginov, S. E. Sverchkov, and Yu. E. Sverchkov, Several Inverse Problems of Kinetic Spectroscopy of Impurity Solids [in Russian], Preprint No. 62, IOP, AS USSR, Moscow (1988).

  21. E. P. Petrov, J. V. Kruchenok, and A. N. Rubinov, J. Fluoresc., 9, 111–121 (1999).

    Article  Google Scholar 

  22. A. K. Livesey and J.-C. Brochon, Biophys. J., 52, 693–706 (1987).

    Article  Google Scholar 

  23. P. J. Steinbach, R. Ionescu, and C. R. Matthews, Biophys. J., 82, 2244–2255 (2002).

    Article  Google Scholar 

  24. R. Willingale, Mon. Not. R. Astron. Soc., 194, 359–364 (1981).

    ADS  Google Scholar 

  25. Z. Ablonczy, A. Lukacs, and E. Papp, Biophys. Chem., 104, 249–258 (2003).

    Article  Google Scholar 

  26. R. Swaminathan, G. Krishnamoorthy, and N. Periasamy, Biophys. J., 67, 2013–2023 (1994).

    Article  ADS  Google Scholar 

  27. T. N. Anand Kumar, J. F. Leyun, C. Zhu, A. A. Demidov, and P. M. Champion, J. Phys. Chem. B, 105, 7847–7856 (2001).

    Article  Google Scholar 

  28. S. Sibisi, J. Skilling, R. G. Brereton, E. D. Lane, and J. Staunton, Nature, 311, 446–447 (1984).

    Article  ADS  Google Scholar 

  29. T. Uchiyama, H. Minamitani, and M. Sakata, Jpn. J. Appl. Phys., 29, 212–218 (1990).

    Article  ADS  Google Scholar 

  30. J. Skilling, ed., in: Maximum Entropy and Bayesian Methods, Kluwer Academic, Norwell (1989), pp. 45–52.

  31. A. A. Maskevich, V. I. Stsiapura, and P. T. Balinski, in: Articles from the International Scientific Conference "Molecular Membranes and Cellular Bases of Biosystem Functioning" and Sixth Conference of the Belarusian Society for Education of Photobiologists and Biophysicists [in Russian], Minsk, October 6–8, 2004, RB President Center for Academic Management (2004), pp. 156–158.

  32. D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, 431–441 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  33. E. S. Voropai, M. P. Samtsov, K. N. Kaplevskii, A. A. Maskevich, V. I. Stsiapura, O. I. Povarova, I. M. Kuznetsova, K. K. Turoverov, A. L. Fink, and V. N. Uverskii, Zh. Prikl. Spektrosk., 70, No. 6, 767–773 (2003).

    Google Scholar 

  34. A. A. Maskevich, V. I. Stsiapura, V. A. Kuzmitsky, I. M. Kuznetsova, O. I. Povarova, V. N. Uversky, and K. K. Turoverov, J. Proteome Res., 6, 1392–1401 (2007).

    Article  Google Scholar 

  35. V. I. Stsiapura, A. A. Maskevich, V. A. Kuzmitsky, K. K. Turoverov, and I. M. Kuznetsova, J. Phys. Chem. A, 111, 4829–4835 (2007).

    Article  Google Scholar 

  36. V. I. Stsiapura, A. A. Maskevich, V. A. Kuzmitsky, V. N. Uversky, I. M. Kuznetsova, and K. K. Turoverov, J. Phys. Chem. B, 112, 15893–15902 (2008).

    Article  Google Scholar 

  37. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maskevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 77, No. 2, pp. 209–217, March–April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maskevich, A.A., Stsiapura, V.I. & Balinski, P.T. Analysis of fluorescence decay kinetics of thioflavin t by a maximum entropy method. J Appl Spectrosc 77, 194–201 (2010). https://doi.org/10.1007/s10812-010-9314-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-010-9314-8

Key words

Navigation