Journal of Applied Spectroscopy

, Volume 77, Issue 2, pp 194–201 | Cite as

Analysis of fluorescence decay kinetics of thioflavin t by a maximum entropy method

  • A. A. Maskevich
  • V. I. Stsiapura
  • P. T. Balinski

The application of a maximum entropy method (MEM) for analysis of time-resolved fluorescence data is discussed. A developed version of MEM has been tested using simulated kinetic data. Based on computed results, practical criteria have been established to determine whether the lifetime distribution of emitting centers is described by a discrete spectrum (a set of two or three exponentials) or by a continuous one (mono- or bimodal distribution of exponentials). The proposed method has been used to analyze the fluorescence decay kinetics of thioflavin T (ThT) intercalated into amyloid fibrils. The presence of two peaks in the lifetime distribution of emitting centers has been explained by the existence in fibrils of two types of binding centers substantially differing in microenvironment rigidity. This suggestion is supported by the results of fluorescence quenching of intercalated ThT with the quencher KI.

Key words

time-resolved fluorescence spectroscopy maximum entropy method thioflavin T amyloid fibrils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. V. O’Connor and D. Phillips, Time-correlated Single Photon Counting, Academic Press, New York (1984).Google Scholar
  2. 2.
    W. R. Ware, in: Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology, R. B. Cundall, ed., Plenum Press, New York (1983), p. 23.Google Scholar
  3. 3.
    A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Conditioned Problems [in Russian], Nauka, Moscow (1974).Google Scholar
  4. 4.
    L. Dobrynski and A. Holas, Nucl. Instrum. Methods Phys. Res., Sect. A, 383, 589 (1996).CrossRefADSGoogle Scholar
  5. 5.
    R. D. Dyson and I. Isenberg, Biochemistry, 10, 3233–3241 (1971).CrossRefGoogle Scholar
  6. 6.
    A. Grinvald and I. Z. Steinberg, Anal. Biochem., 59, 583–598 (1974).CrossRefGoogle Scholar
  7. 7.
    S. K. Basharin, G. A. Gachko, L. N. Kivach, S. A. Maskevich, A. A. Maskevich, and V. R. Udovydchenko, Zh. Prikl. Spektrosk., 52, No. 1, 48–52 (1990).Google Scholar
  8. 8.
    H. P. Good, A. J. Kaller, and U. P. Wild, J. Phys. Chem., No. 22, 5435–5441 (1984).CrossRefGoogle Scholar
  9. 9.
    J. Sopkova, J. Gallay, M. Vincent, P. Pancoska, and A. Lewit-Bentley, Biochemistry, 33, 4490–4499 (1994).CrossRefGoogle Scholar
  10. 10.
    J. Sopkova, M. Vincent, M. Takahashi, A. Lewit-Bentley, and J. Gallay, Biochemistry, 37, 11962–11970 (1998).CrossRefGoogle Scholar
  11. 11.
    A. A. Maskevich, S. K. Basharin, G. A. Gachko, L. N. Kivach, and S. A. Maskevich, Zh. Prikl. Spektrosk., 53, No. 4, 557–563 (1990).Google Scholar
  12. 12.
    N. Rouviere, M. Vincent, C. T. Craescu, and J. Gallay, Biochemistry, 36, 7339–7352 (1997).CrossRefGoogle Scholar
  13. 13.
    E. Bismuto, G. Irace, S. D’Auria, M. Rossi, and R. Nucci, Eur. J. Biochem., 244, 53–58 (1997).CrossRefGoogle Scholar
  14. 14.
    J. K. A. Kamal and D. V. Behere, Biochem. Biophys. Res. Commun., 289, 427–433 (2001).CrossRefGoogle Scholar
  15. 15.
    J. G. McWhirter and E. R. Pike, J. Phys. A: Math. Gen., 11, 1729–1745 (1978).CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    A. Siemiarczuk, B. D. Wagner, and W. R. Ware, J. Phys. Chem., 94, 1661–1666 (1990).CrossRefGoogle Scholar
  17. 17.
    J.-C. Brochon, Methods Enzymol., 240, 262–311 (1994).CrossRefGoogle Scholar
  18. 18.
    D. R. James and W. R. Ware, Chem. Phys. Lett., 120, 455–459 (1985).CrossRefADSGoogle Scholar
  19. 19.
    G. Landl, T. Langthaler, H. W. Engl, and H. F. Kauffman, J. Comput. Phys., 95, 1–28 (1991).MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    M. A. Noginov, S. E. Sverchkov, and Yu. E. Sverchkov, Several Inverse Problems of Kinetic Spectroscopy of Impurity Solids [in Russian], Preprint No. 62, IOP, AS USSR, Moscow (1988).Google Scholar
  21. 21.
    E. P. Petrov, J. V. Kruchenok, and A. N. Rubinov, J. Fluoresc., 9, 111–121 (1999).CrossRefGoogle Scholar
  22. 22.
    A. K. Livesey and J.-C. Brochon, Biophys. J., 52, 693–706 (1987).CrossRefGoogle Scholar
  23. 23.
    P. J. Steinbach, R. Ionescu, and C. R. Matthews, Biophys. J., 82, 2244–2255 (2002).CrossRefGoogle Scholar
  24. 24.
    R. Willingale, Mon. Not. R. Astron. Soc., 194, 359–364 (1981).ADSGoogle Scholar
  25. 25.
    Z. Ablonczy, A. Lukacs, and E. Papp, Biophys. Chem., 104, 249–258 (2003).CrossRefGoogle Scholar
  26. 26.
    R. Swaminathan, G. Krishnamoorthy, and N. Periasamy, Biophys. J., 67, 2013–2023 (1994).CrossRefADSGoogle Scholar
  27. 27.
    T. N. Anand Kumar, J. F. Leyun, C. Zhu, A. A. Demidov, and P. M. Champion, J. Phys. Chem. B, 105, 7847–7856 (2001).CrossRefGoogle Scholar
  28. 28.
    S. Sibisi, J. Skilling, R. G. Brereton, E. D. Lane, and J. Staunton, Nature, 311, 446–447 (1984).CrossRefADSGoogle Scholar
  29. 29.
    T. Uchiyama, H. Minamitani, and M. Sakata, Jpn. J. Appl. Phys., 29, 212–218 (1990).CrossRefADSGoogle Scholar
  30. 30.
    J. Skilling, ed., in: Maximum Entropy and Bayesian Methods, Kluwer Academic, Norwell (1989), pp. 45–52.Google Scholar
  31. 31.
    A. A. Maskevich, V. I. Stsiapura, and P. T. Balinski, in: Articles from the International Scientific Conference "Molecular Membranes and Cellular Bases of Biosystem Functioning" and Sixth Conference of the Belarusian Society for Education of Photobiologists and Biophysicists [in Russian], Minsk, October 6–8, 2004, RB President Center for Academic Management (2004), pp. 156–158.Google Scholar
  32. 32.
    D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, 431–441 (1963).MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    E. S. Voropai, M. P. Samtsov, K. N. Kaplevskii, A. A. Maskevich, V. I. Stsiapura, O. I. Povarova, I. M. Kuznetsova, K. K. Turoverov, A. L. Fink, and V. N. Uverskii, Zh. Prikl. Spektrosk., 70, No. 6, 767–773 (2003).Google Scholar
  34. 34.
    A. A. Maskevich, V. I. Stsiapura, V. A. Kuzmitsky, I. M. Kuznetsova, O. I. Povarova, V. N. Uversky, and K. K. Turoverov, J. Proteome Res., 6, 1392–1401 (2007).CrossRefGoogle Scholar
  35. 35.
    V. I. Stsiapura, A. A. Maskevich, V. A. Kuzmitsky, K. K. Turoverov, and I. M. Kuznetsova, J. Phys. Chem. A, 111, 4829–4835 (2007).CrossRefGoogle Scholar
  36. 36.
    V. I. Stsiapura, A. A. Maskevich, V. A. Kuzmitsky, V. N. Uversky, I. M. Kuznetsova, and K. K. Turoverov, J. Phys. Chem. B, 112, 15893–15902 (2008).CrossRefGoogle Scholar
  37. 37.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. A. Maskevich
    • 1
  • V. I. Stsiapura
    • 1
  • P. T. Balinski
    • 1
  1. 1.Yanka Kupala Grodno State UniversityGrodnoBelarus

Personalised recommendations