Journal of Applied Spectroscopy

, Volume 76, Issue 6, pp 819–825 | Cite as

Gaseous phase monitoring during reactive sputtering of yttrium in glow discharges

  • V. A. Khvostikov
  • S. S. Grazhulene

The emission and fluorescence spectra at wavelengths of 580–650 nm during sputtering of yttrium, zirconium, and their alloys are studied for the purpose of developing spectroscopic methods for monitoring the composition of the gaseous phase during cathode sputtering of these metals in glow discharges in oxygen-argon atmospheres. The 584.2, 585.9, 587.4; 613.2, 614.8, 616.5, 617.9; 647.1, 648.7, and 650.3 nm lines are identified as molecular lines of yttrium oxide. The corresponding electronic transition energies are calculated. A correlation is found between the behavior of the emission and fluorescence spectra of the gaseous phase within this wavelength range during sputtering of yttrium in glow discharges and changes in the concentration of the oxygen-argon mixture. The dependence of the fluorescence and emission line intensities of the yttrium oxide molecule on the partial pressure of oxygen is studied.


laser fluorescence glow discharge reactive cathode sputtering molecular spectra. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Marchenko, Prikl. Fizika, No. 1, 35–39 (2008).Google Scholar
  2. 2.
    D. Y. Wang, P. Yun, H. L. W. Chan, and C. L. Choy, Thin Solid Films, 517, 2092–2098 (2009).CrossRefADSGoogle Scholar
  3. 3.
    D. Pamu, K. Sudheendran, M. G. Krishna, K. C. J. Raju, and A. K. Bhatnagar, Thin Solid Films, 517, 1587–1591 (2009).CrossRefADSGoogle Scholar
  4. 4.
    S. Schorr, A. Weber, V. Konkimäki, and H. Werner, Thin Solid Films, 517, 2461–2464 (2009).CrossRefGoogle Scholar
  5. 5.
    P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, Thin Solid Films, 517, 2519–2523 (2009).CrossRefGoogle Scholar
  6. 6.
    J. F. Trigo, A. Bollero, J. Herrero, and M. T. Gutiérrez, Thin Solid Films, 517, 2260–2263 (2009).CrossRefGoogle Scholar
  7. 7.
    R. O. Dillon, K. Le, and N. Ianno, Thin Solid Films, 398–399, 10–16 (2001).CrossRefGoogle Scholar
  8. 8.
    H. J. Schlag and W. Scherber, Thin Solid Films, 366, 28–31 (2000).CrossRefADSGoogle Scholar
  9. 9.
    D. Depla, S. Mahieu, and R. DeGryse, Thin Solid Films, 517, 2825–2839 (2009).CrossRefADSGoogle Scholar
  10. 10.
    S. Grazhulene, V. Khvostikov, and M. Sorokin, Spectrochim. Acta, 46B, No. 4, 459–465 (1991).ADSGoogle Scholar
  11. 11.
    M. Mueller, Fundamentals of Quantum Chemistry. Molecular Spectroscopy and Modern Electronic Structure Computations, Kluwer Academic Publishers, New York (2001).Google Scholar
  12. 12.
    R. Pease and A. Gaydon, The Identification of Molecular Spectra, Chapman & Hall Ltd. , London (1963).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesMoscow districtRussia

Personalised recommendations