Journal of Applied Spectroscopy

, Volume 76, Issue 4, pp 457–463 | Cite as

Quantum chemical analysis of vibrational spectra of methylphenylcarbamate

  • M. B. Shundalov
  • G. A. Pitsevich
  • M. A. Ksenofontov
  • D. S. Umreiko

We present results of ab initio and DFT calculations of the structure, potential function of internal rotation of the methyl group, and vibrational frequencies and intensities in IR and Raman spectra of methylphenylcarbamate. The calculations were carried out in different basis sets in the HF, MP2, and DFT/B3LYP approximations with partial force field scaling. The influence of the phenyl substituent on structural and spectral characteristics of the urethane group has been analyzed. Calculated characteristics of vibrational spectra show satisfactory agreement with experimental values.

Key words

ab initio and DFT calculations torsional potential infrared spectra Raman spectra methylphenylcarbamate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Buist, Developments in Polyurethane, Applied Science Publishers, London (1978).Google Scholar
  2. 2.
    M. A. Ksenofontov, D. S. Umreiko, L. E. Ostrovskaya, and A. S. Khatenko, Spectral Analysis of Dihydroxybenzenes as the Principal Structural Unit of Gas-Filled Polymers [in Russian], Izd. Tsentr Bel. Gos. Univ., Minsk (2005).Google Scholar
  3. 3.
    M. B. Shundalov, G. A. Pitsevich, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektrosk., 76, No. 3, 349–357 (2009).Google Scholar
  4. 4.
  5. 5.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  6. 6.
  7. 7.
    B. M. Bode and M. S. Gordon, J. Mol. Graph. Model., 16, 133–138 (1998).CrossRefGoogle Scholar
  8. 8.
    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).CrossRefADSGoogle Scholar
  9. 9.
    C. Möller and M. S. Plesset, Phys. Rev., 46, 618–622 (1934).CrossRefADSGoogle Scholar
  10. 10.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefADSGoogle Scholar
  11. 11.
    G. Keresztury, F. Billes, M. Kubinyi, and T. Sundius, J. Phys. Chem. A, 102, 1371–1380 (1998).CrossRefGoogle Scholar
  12. 12.
    V. Szalay, A. G. Csaszar, and M. L. Senent, J. Chem. Phys., 117, 6489–6492 (2002).CrossRefADSGoogle Scholar
  13. 13.
    D. Xu and A. L. Cooksy, J. Mol. Struct. (Theochem.), 815, 119–125 (2007).CrossRefGoogle Scholar
  14. 14. (National Institute of Advanced Industrial Science and Technology, date of access)
  15. 15.
    M. A. El’yashevich, Atomic and Molecular Spectroscopy [in Russian], URSS, Moscow (2001).Google Scholar
  16. 16.
    V. V. Sivchik and K. M. Grushetskii, Zh. Prikl. Spektrosk., 19, No. 2, 317–319 (1973).Google Scholar
  17. 17.
    H. D. Bist, J. C. D. Brand, and D. R. Williams, J. Mol. Spectrosc., 24, 402–412 (1967).CrossRefADSGoogle Scholar
  18. 18.
    K. Nakanishi, Infrared Absorption Spectroscopy. Practical, Holden-Day, San Francisco (1962).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • M. B. Shundalov
    • 1
  • G. A. Pitsevich
    • 1
  • M. A. Ksenofontov
    • 2
  • D. S. Umreiko
    • 2
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.A. N. Sevchenko Institute of Applied Physical ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations