Journal of Applied Spectroscopy

, Volume 76, Issue 4, pp 547–553 | Cite as

Influence of photon energy on the efficiency of photochemotherapy

  • M. P. Samtsov
  • E. S. Voropay
  • K. N. Kaplevsky
  • D. G. Melnikau
  • L. S. Lyashenko
  • Yu. P. Istomin

It is found that when indotricarbocyanine dye in HeLa cells is exposed to photons with different energies the efficiency of cell damage is wavelength independent provided the photosensitizer absorbs the same number of photons per unit time. In vivo animal experiments with two strains of tumor show that when the wavelength of the irradiating light is increased (668, 740, and 780 nm) and the number of photons absorbed per unit time per unit volume of the tumors is held constant, the damage depth increases by a factor of 1.5 and 3, respectively. The observed changes are related both to differences in the in vivo tissue optical transmission with increasing wavelength and an increased local concentration of oxygen owing to photodissociation of oxyhemoglobin.

Key words

indotricarbocyanine dyes in vivo efficiency of photochemotherapy wavelength of light 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, J. Natl. Cancer Inst., 90, 889–905 (1998).CrossRefGoogle Scholar
  2. 2.
    R. Hsi, D. Rosental, and E. Glatstein, Drugs, 57, 725–734 (1999).CrossRefGoogle Scholar
  3. 3.
    E. S. Voropay, M. P. Samtsov, A. P. Lugovskiy, E. N. Aleksandrova, V. N. Chalov, and E. A. Zhavrid, and Y. P. Istomin, Proc. SPIE, 4749, 221–227 (2002).CrossRefADSGoogle Scholar
  4. 4.
    A. F. Mironov, M. A. Grin, A. G. Tsiprovskii, A. V. Segenevich, D. V. Dzardanov, K. V. Golovin, A. A. Tsygankov, and Y. K. Shim, Bioorg. Chem., 29, No. 2, 190–197 (2003).CrossRefGoogle Scholar
  5. 5.
    Y. Chen, A. Graham, W. Potter, J. Morgan, L. Vaughan, D. Bellnier, B. Henderson, A. Oseroff, T. Dougherty, and R. Pandey, J. Med. Chem., 45, No. 2, 255–258 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Oertel, S. Schastak, A. Tannapfel, R. Hermann, U. Sack, J. Mossner, and F. Berr, J. Photochem. Photobiol. B, 71, Nos. 1–3, 1–10 (2003).CrossRefGoogle Scholar
  7. 7.
    M. Blank, G. Kostenich, G. Lavie, S. Kimel, Y. Keisari, and A. Orenstein, J. Photochem. Photobiol. B, 76, No. 3, 335–340 (2002).CrossRefGoogle Scholar
  8. 8.
    L. Lee, C. Whitehurst, M. Pantelides, and J. Moore, J. Photochem. Photobiol., 62, No. 5, 882–886 (1995).Google Scholar
  9. 9.
    A. Oseroff, G. Ara, D. Ohuoha, J. Aprille, J. Bommer, M. Yarmush, J. Foley, and L. Cincotta, J. Photochem. Photobiol., 46, 83–96 (1987).CrossRefGoogle Scholar
  10. 10.
    G. S. Lipshutz, D. J. Castro, R. E. Saxton R. P. Haugland, and J. Soudant, Laryngoscope, 104, 996–1002 (1994).CrossRefGoogle Scholar
  11. 11.
    Y. P. Istomin, E. N. Alexandrova, V. N. Chalov, E. A. Zhavrid, E. S. Voropay, M. P. Samtsov, A. P. Lugovskiy, A. A. Lugovskiy, and I. S. Mikhalovsky, Exper. Oncology, 26, No. 3, 226–231 (2004).Google Scholar
  12. 12.
    E. S. Voropai, M. P. Samtsov, I. M. Gulis, D. V. Glushkov, K. N. Kaplevskii, A. E. Rad’ko, K. A. Shevchenko, et al., in: E. S. Voropai, ed., Spectral Appratus for Analytic Applications. Promising Developments [in Russian], Bel. gos. un-t, Minsk (2005), pp. 5–9.Google Scholar
  13. 13.
    S. Coutier, S. Mitra, L. Bezdetnaya, R. Parache, I. Georgakoudi, and F. Guillemin, J. Photochem. Photobiol., 73, (3), 297–303 (2001).CrossRefGoogle Scholar
  14. 14.
    H. Pass, J. Natl. Cancer Inst., 85, 443–456 (1993).CrossRefGoogle Scholar
  15. 15.
    E. F. Stranadko, Ros. Onkolog. Zh., No. 4, 52–56 (2000).Google Scholar
  16. 16.
    T. Hasan and J. Parrish, Cancer Medicine, (1997), pp. 739–751Google Scholar
  17. 17.
    P. Vaupel, O. Thews, D. Kelleher, and M. Hoeckel, Strahlenther. Onkol., 174, No. 4, 6–12 (1998).Google Scholar
  18. 18.
    M. P. Samtsov, E. S. Voropay, D. G. Melnikov, and K. N. Kaplevsky, Roc. SPIE, 6733, 67331C-1-67331C-8 (2007).Google Scholar
  19. 19.
    E. S. Voropai, M. P. Samtsov, K. N. Kaplevskii, A. A. Lugovskii, and E. N. Aleksandrova, Zh. Prikl. Spektr., 71, No. 2, 166–172 (2004).Google Scholar
  20. 20.
    V. B. Loshenov, V. I. Konov, and A. M. Prokhorov, Las. Physics, 10, No. 6, 1188–1207 (2000).Google Scholar
  21. 21.
    P. Taroni, A. Pifferi, A. Torricelli, and D. Comelli, Photochem. Photobiol. Sci., 2, (2003) 124–129CrossRefGoogle Scholar
  22. 22.
    A. Ballangrud, O. Barajas. A. Georgousis, G. Miller, R. Moore, and M. Phee, Lasers in Surgery and Medicine, 21, No. 2, 124–133 (1997).CrossRefGoogle Scholar
  23. 23.
    R. Weissleder and V. Ntziachristos, Nature Medicine, 9, No. 1, 123–128 (2003).CrossRefGoogle Scholar
  24. 24.
    M. M. Asimov, R. M. Asimov, and A. N. Rubinov, Zh. Prikl. Spektr., 65, No. 6, 877–880 (1998).Google Scholar
  25. 25.
    M. M. Asimov, R. M. Asimov, A. N. Rubinov, S. A. Mamilov, Yu. S. Plaksii, and S. S. Es’man, Laser-induced oxygenation of tissues and stimulated aerobic cell metabolism, Preprint, Inst. of Physics of the National Acad. of Sci. of Belarus, Minsk, No. 746 (2008).Google Scholar
  26. 26.
    G. A. Zalesskaya and V. S. Ulashchik, Zh. Prikl. Spektrosk., 76, No. 1, 51–75 (2009).Google Scholar
  27. 27.
    B. M. Dzhagarov, V. S. Chirvonyi, and G. P. Gurinovich, in: V. S. Letokhov, ed., Picosecond Spectroscopy and Photochemistry of Biological Molecules [in Russian], Mir, Moscow (1987), p. 212.Google Scholar
  28. 28.
    B. M. Dzhagarov, É. A. Zhavrid, Yu. P. Istomin, and V. N. Chalov, Zh. Prikl. Spektrosk., 68, No. 2, 151–153, (2001).Google Scholar
  29. 29.
    B. M. Dzhagarov, S. A. Bizyuk, M. V. Parkhots, É . A. Zhavrid, and Yu. P. Istomin, in: Abstracts from the International Conf. on Laser-optical Technology in Biology and Medicine, October 14–15, 2004, Inst. of Physics of the National Acad. of Sci. of Belarus, Minsk (2004), pp. 163–168.Google Scholar
  30. 30.
    M. M. Asimov, R. M. Asimov, and A. N. Rubinov, Lazern. Meditsina, 11, 53–59 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • M. P. Samtsov
    • 2
  • E. S. Voropay
    • 1
  • K. N. Kaplevsky
    • 1
  • D. G. Melnikau
    • 1
  • L. S. Lyashenko
    • 1
  • Yu. P. Istomin
    • 3
  1. 1.Belarus State UniversityMinskBelarus
  2. 2.A. N. Sevchenko Institute of Applied Physical ProblemsMinskBelarus
  3. 3.N. N. Aleksandrov Institute of Oncology and RadiologyMinskBelarus

Personalised recommendations