Journal of Applied Spectroscopy

, Volume 76, Issue 1, pp 44–65 | Cite as

Molecular mechanisms of photochemotherapy (Review)


Mechanisms of photophysical, photobiological, and therapeutic action of light on blood in vivo are discussed based on results of spectral and clinical studies of blood, plasma, and erythrocytes. Spectral manifestations of photochemical reactions initiated in blood by therapeutic doses of radiation in vivo with light of different wavelengths are considered. Spectral and clinical results of blood investigations are compared for patients whose complex treatment included intravenous blood irradiation and magnetotherapy. Mechanisms for secondary (dark) reactions induced by the action of light on blood in vivo are discussed. The radiation of laser and non-laser light sources used at present for intravenous blood irradiation (365, 405, 450, 530, 632, 635, 808 nm) is shown to fall within hemoglobin absorption bands. The conclusion is made that blood absorption of laser and non-laser light radiation results in functional alteration of hemoglobin as a possible primary photoacceptor absorbing light radiation of the above wavelengths. The therapeutic effect of intravenous blood irradiation is initiated by hemoglobin functional activity modulation. Phototherapy is a means to correct it. Intravenous phototherapy should be considered as a therapeutic method that changes (provided that the dosage is correct) the balance of active oxygen species production and their inhibition by antioxidants.

Key words

phototherapy intravenous blood irradiation UV-visible spectra of blood infrared spectra hemoglobin spectra plasma luminescence spectrum active oxygen species lipid peroxidation oxidative stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Kryuk, V. A. Mostovnikov, I. V. Khokhlov, and N. S. Serdyuchenko, Therapeutic Effectiveness of Low-Intensity Laser Radiation [in Russian], Minsk (1986).Google Scholar
  2. 2.
    T. I. Karu, in: Progress in Science and Technology. Series Physical Principles of Laser and Beam Technology [in Russian], VINITI, Moscow (1989), No. 4, 44–84.Google Scholar
  3. 3.
    V. E. Illarionov, Principles of Laser Therapy [in Russian], Respekt, Moscow (1992).Google Scholar
  4. 4.
    V. I. Karandashov, E. B. Petukhov, and V. S. Zrodnikov, Phototherapy [in Russian], Meditsina, Moscow (2001).Google Scholar
  5. 5.
    T. I. Karu, in: Biomedical Photonics Handbook, T. Vo-Dinh, ed., CRC Press LLC, Boca Raton, FL (2003), 48-1–48-21.Google Scholar
  6. 6.
    S. V. Moskvin and V. A. Builin, Principles of Laser Therapy [in Russian], Triada, Moscow, Tver’ (2006).Google Scholar
  7. 7.
    Yu. A. Vladimirov, Soros. Obrazov. Zh., No. 12, 2–8 (1999).Google Scholar
  8. 8.
    N. D. Devyatkov, S. M. Zubkova, I. B. Laprun, and N. S. Makeeva, Usp. Sovrem. Biol., 103, 31–43 (1987).Google Scholar
  9. 9.
    Yu. A. Vladimirov, G. I. Klebanov, G. G. Borisenko, and A. N. Osipov, Biofizika, 49, 339–350 (2004).Google Scholar
  10. 10.
    T. I. Karu, J. Photochem. Photobiol. B: Biol., 49, 1–17 (1999).CrossRefGoogle Scholar
  11. 11.
    A. V. Marochkov, Intravessel Laser Blood Irradiation, Mechanisms of Interaction and Clinical Application [in Russian], Polibig, Minsk (1996).Google Scholar
  12. 12.
    G. A .Zalesskaya, N. I. Nechipurenko E. G. Sambor, and Yu. I. Musienko, in: Proceedings of the International Conference "Laser-Optical Technologies in Biology and Medicine," Minsk (2004), 1, 145–149.Google Scholar
  13. 13.
    G. A. Zalesskaya and E. G. Sambor, Zh. Prikl. Spektrosk., 72, No. 2, 230–235 (2005).Google Scholar
  14. 14.
    T. V. Chichuk, I. A. Strashkevich, and G. I. Klebanov, Vestn. Ross. Akad. Med. Nauk, 2, 27–31 (1999).Google Scholar
  15. 15.
    E. A. Gorbatenkova, Yu. A. Vladimirov, N. V. Paramonov, and O. A. Azizova, Byull. Éksp. Biol. Med., 107, 302–305 (1989).CrossRefGoogle Scholar
  16. 16.
    S. D. Zakharov and A. V. Ivanov, Kvantovaya Élektron. (Moscow), 29, 192–214 (1999).Google Scholar
  17. 17.
    S. M. Zubkova, Biol. Nauki (Moscow), No. 7, 30–37 (1978).Google Scholar
  18. 18.
    A. B. Rubin, Biophysics [in Russian], 2, Universitet, Moscow (2000).Google Scholar
  19. 19.
    V. I. Karandashov and E. B. Petukhov, Ultraviolet Blood Irradiation [in Russian], Meditsina, Moscow (1997).Google Scholar
  20. 20.
    K. A. Samoilova, Effect of UV Radiation on the Cell [in Russian], Nauka, Leningrad (1967).Google Scholar
  21. 21.
    A. T. Lordkipanidze, D. I. Roshchupkin, and A. B. Perenitsyn, Stud. Biophysica, 71, 15–22 (1978).Google Scholar
  22. 22.
    V. S. Letokhov, Il Nuovo Cimento, 13D, 939–947 (1991).CrossRefADSGoogle Scholar
  23. 23.
    V. I. Bukatyi, Ya. V. Pavlova, S. I. Sakovich, and G. G. Ustinova, Biomed. Tekhnol. Radioélektron., No. 1, 46–57 (2005).Google Scholar
  24. 24.
    V. V. Barun and A. P. Ivanov, Kvantovaya Élektron. (Moscow), 34, 1069–1076 (2004).CrossRefGoogle Scholar
  25. 25.
    G. A. Ryabov, Hypoxia of Critical Conditions [in Russian], Meditsina, Moscow (1988).Google Scholar
  26. 26.
    T. I. Karu, IEEE J. Quantum Electron., QE-23, 1703–1717 (1987).CrossRefADSGoogle Scholar
  27. 27.
    G. I. Klebanov, N. Yu. Shuraeva, T. V. Chichuk, A. N. Osipov, T. G. Rudenko, A. B. Shekhter, and Yu. A. Vladimirov, Biofizika, 50, 1137–1144 (2005).Google Scholar
  28. 28.
    S. V. Moskvin, Intravenous Laser Blood Irradiation [in Russian], Matriks, Moscow (2007).Google Scholar
  29. 29.
    K. V. Timofeev, V. V. Ryl’kov, A. L. Shurygin, and V. E. Kholmogorov, Dokl. Akad. Nauk SSSR, 255, 751–755 (1980).Google Scholar
  30. 30.
    M. Yu. Taras’ev and V. V. Ryl’kov, Biokhimiya, 56, 1296–1303 (1991).Google Scholar
  31. 31.
    A. Ya. Khairullina, M. V. Parkhotts, T. V. Oleinik, L. M. Bui, and B. M. Dzhagarov, Opt. Spektrosk., 91, 54–58 (2001).CrossRefADSGoogle Scholar
  32. 32.
    V. N. Lopatin, A. V. Priezzhev, A. D. Aponasenko, N. V. Shepelevich, V. V. Lopatin, P. V. Pozhilenkova, and I. V. Prostakova, Methods of Light Scattering in the Analysis of Dispersed Biological Media [in Russian], Fizmatlit, Moscow (2004).Google Scholar
  33. 33.
    V. G. Artyukhov, Zh. Prikl. Spektrosk., 41, No. 1, 87–91 (1984).Google Scholar
  34. 34.
    G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov’ev, Spectroscopy of Chlorophyll and Related Compounds [in Russian], Nauka i Tekhnika, Minsk (1968).Google Scholar
  35. 35.
    E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland Pub. Co., Amsterdam (1971).Google Scholar
  36. 36.
    E. Gratton and S. Fantini, in: Lasers and Current Optical Techniques in Biology, Ser. Compr. Photochemistry and Photobiology, Royal Society of Chemistry, Cambridge (2004), 4, 211–258.Google Scholar
  37. 37.
    W. A. Eaton, L. K. Hanson, P. J. Stephenson, J. C. Sutherland, and J. B. R. Dunn, J. Am. Chem. Soc., 100, 4991–5003 (1978).CrossRefGoogle Scholar
  38. 38.
    N. F. Gamaleya, E. D. Shishko, and Yu. V. Yanish, Izv. Akad. Nauk SSSR, Ser. Fiz., 50, 1027–1032 (1986).Google Scholar
  39. 39.
    I. M. Baibekov, A. Kh. Kasymov, V. N. Kozlov, et al., Morphological Principles of Low-Intensity Laser Therapy [in Russian], Izd. Ibn Siny, Tashkent (1991).Google Scholar
  40. 40.
    G. A. Zalesskaya, E. G. Sambor, and A. V. Kuchinskii, Zh. Prikl. Spektrosk., 73, No. 1, 106–112 (2006).Google Scholar
  41. 41.
    G. A. Zalesskaya, E. G. Sambor, and N. I. Nechipurenko, Proc. SPIE Int. Soc. Opt. Eng., 6257, 6257OV-1–OV-8 (2005).Google Scholar
  42. 42.
    G. Zalesskaya, V. Ulaschik, A. Kuchinsky, and O. Galay, Proc. SPIE Int. Soc. Opt. Eng., 6727, 6727T (2007).Google Scholar
  43. 43.
    G. Zalesskaya, N. Nechipurenko, J. Musienko, and A. Kuchinsky, Proc. SPIE Int. Soc. Opt. Eng., 6734, 67341B (2007).Google Scholar
  44. 44.
    G. A. Zalesskaya, V. S. Ulashchik, N. P. Mit’kovskaya, A. V. Kuchinsky, and O. V. Laskina, Zh. Prikl. Spektrosk., 75, No. 3, 400–405 (2008).Google Scholar
  45. 45.
    J. W. Petrich, C. Poyart, and J. L. Martin, Biochemistry, 27, 4049–4060 (1988).CrossRefGoogle Scholar
  46. 46.
    J. L. Martin, A. Migus, C. Poyart, Y. Lecarpentier, R. Astier, and A. Antonetti, Proc. Natl. Acad. Sci. USA, 80, 173–177 (1983).CrossRefADSGoogle Scholar
  47. 47.
    B. M. Dzhagarov, Zh. Prikl. Spektrosk., 66, No. 4, 479–482 (1999).Google Scholar
  48. 48.
    E. A. Chernitskii and E. I. Slobozhanina, Spectral Luminescent Analysis in Medicine [in Russian], Nauka i Tekhnika, Minsk (1989).Google Scholar
  49. 49.
    I. I. Sapeshinskii, in: Photobiology of the Living Cell [in Russian], Nauka, Leningrad (1979), 17–23.Google Scholar
  50. 50.
    E. A. Chernitskii and A. V. Vorobei, in: Molecular Mechanisms of the Biological Activity of Optical Radiation [in Russian], Nauka, Moscow (1988), 92–101.Google Scholar
  51. 51.
    V. E. Kholmogorov and A. L. Shurygin, Biofizika, 26, 540–541 (1981).Google Scholar
  52. 52.
    M. F. Perutz, J. E. Ladner, S. R. Simpson, and C. Ho, Biochemistry, 13, 2163–2173 (1974).CrossRefGoogle Scholar
  53. 53.
    Yu. N. Chirgadze, in: Progress in Science and Technology. Ser. Molec. Biology [in Russian], VINITI, Moscow (1973), 1, 9–60.Google Scholar
  54. 54.
    E. Vass, M. Hollosi, F. Besson, and R. Buchet, Chem. Rev., 103, 1917–1954 (2003).CrossRefGoogle Scholar
  55. 55.
    H. Fabian and W. Mantel, in: Handbook of Vibrational Spectroscopy, J. M. Chalmer and P. R. Griffiths, eds., Wiley and Sons Ltd., Chichester (2002), 1–26.Google Scholar
  56. 56.
    J. O. Alben and G. H. Bare, J. Biol. Chem., 255, 3892–3897 (1980).Google Scholar
  57. 57.
    G. Damian and V. Canpean, Rom. J. Biophys., 15, 67–72 (2005).Google Scholar
  58. 58.
    S. Cai and B. R. Singh, Biophys. Chem., 80, 7–20 (1999).CrossRefGoogle Scholar
  59. 59.
    Yu. N. Chirgadze and A. M. Ovsepyan, Dokl. Akad. Nauk SSSR, 201, 744–746 (1971).Google Scholar
  60. 60.
    H.-D. Jakubke and H. Jeschkeit, Amino Acids, Peptides, and Proteins: An Introduction, Wiley, New York (1977).Google Scholar
  61. 61.
    L. V. Tanin, N. I. Nechipurenko, L. A. Vasilevskaya, G. K. Nedz’ved’, S. E. Rovdo, and A. L. Tanin, Laser Hemotherapy in the Treatment of Diseases of the Peripheral Nervous System [in Russian], Yustmazh, Minsk (2004).Google Scholar
  62. 62.
    C. P. Schultz, K.-Z. Liu, J. B. Jonston, and H. H. Mantsch, J. Mol. Struct., 408–409, 253–256 (1997).CrossRefGoogle Scholar
  63. 63.
    V. N. Bingi and A. V. Savin, Usp. Fiz. Nauk, 173, 265–300 (2003).CrossRefGoogle Scholar
  64. 64.
    V. S. Ulashchuk, Introduction to the Theoretical Principles of Physical Therapy [in Russian], Nauka i Tekhnika, Minsk (1981).Google Scholar
  65. 65.
    A. M. Demetskii, V. N. Chernov, and L. I. Popov, Introduction to Medical Magnetology [in Russian], Rost. Gos. Univ., Rostov-on-Don (1991).Google Scholar
  66. 66.
    V. Yu. Plavskii, V. A. Mostovnikov, A. B. Ryabtsev, et al., Opt. Zh., 74, 27–41 (2007).Google Scholar
  67. 67.
    G. A. Zalesskaya, N. P. Mit’kovskaya, O. A. Galay, A. V. Kuchinsky, and O. V. Laskina, Zh. Prikl. Spektrosk., 74, No. 2, 199–204 (2007).Google Scholar
  68. 68.
    G. A. Zalesskaya, V. S. Ulashchik, N. P. Mit’kovskaya, O. V. Laskina, and A. V. Kuchinsky, Zh. Prikl. Spektrosk., 74, No. 5, 665–669 (2007).Google Scholar
  69. 69.
    L. N. Kartusova, “Effect of He–Ne laser radiation on the physicochemical properties of blood,” Author’s Abstract of a Candidate Dissertation in Biological Sciences, Moscow (1996).Google Scholar
  70. 70.
    N. N. Kipshidze, G. E. Chapidze, I. M. Korochkin, M. R. Bokhua, L. A. Marsagishvili, and G. M. Kapustina, Treatment of Ischemic Disease of the Heart with a He–Ne Laser [in Russian], Amirani, Tbilisi (1996).Google Scholar
  71. 71.
    B. M. Dzhagarov, V. S. Chirvonyi, and G. P. Gurinovich, in: Laser Picosecond Spectroscopy and Photochemistry of Biomolecules [in Russian], Nauka, Moscow (1987), 181–215.Google Scholar
  72. 72.
    B. M. Dzhagarov, S. A. Bizyuk, M. V. Parkhotts, E. A Zhavrid, and Yu. P. Istomin, in: Proceedings of the International Conference “Laser-Optical Technologies in Biology and Medicine,” Minsk (2004), 1, 163–168.Google Scholar
  73. 73.
    I. O. Lipatova, V. M. Arslanova, V. I. Kryuchkov, A. N. Makarov, and A. B. Sakharov, Khirurgiya, 4, 14–19 (2003).Google Scholar
  74. 74.
    V. I. Ruzov, Vopr. Kurortol., Fizioter., Lech. Fiz. Kul’t., No. 5, 5–7 (1996).Google Scholar
  75. 75.
    V. V. Kurek and I. Ch. Tsybin, Zdravookhranenie, 4, 35–39 (2001).Google Scholar
  76. 76.
    M. M. Asimov, R. M. Asimov, and A. N. Rubinov, Zh. Prikl. Spektrosk., 65, No. 6, 877–880 (1998).Google Scholar
  77. 77.
    M. M. Asimov, R. M. Asimov, and A. N. Rubinov, Zh. Prikl. Spektrosk., 72, No. 3, 422–424 (2005).Google Scholar
  78. 78.
    A. P. Vasil’ev, Clinical-Treatment Aspects of Application of Laser Radiation for Angina Patients [in Russian], Progress, Tyumen’ (2003).Google Scholar
  79. 79.
    K. V. Popov, A. D. Kuimov, and O. N. Poteryaeva, Zh. Éksp. Klin. Med., No. 1–2, 177–182 (2005).Google Scholar
  80. 80.
    G. E. Brill’, V. V. Kupchinov, and E. G. Kulikova, Application of Low-Intensity Lasers and Millimeter-Range Radiation in Experiments and the Clinic [in Russian], Izd. Saratov Gos. Univ., Saratov (1994), 43–46.Google Scholar
  81. 81.
    Yu. I. Musienko, N. I. Nechipurenko, and V. S. Kamyshnikov, Zdravookhranenie, 12, 18–20 (2003).Google Scholar
  82. 82.
    A. E. Gromov, A. N. Vetosh, N. P. Nikonchuk, V. G. Perelygin, and I. B. Ruzanov, in: Mechanisms of Action of Blood Irradiated by UV Light on the Human and Animal Organisms [in Russian], Nauka, Leningrad (1986), 202–207.Google Scholar
  83. 83.
    A. E. Gromov, L. V. Potashov, N. P. Nikonchuk, V. G. Perelygin, R. V. Chemanova, and A. A. Shramko, in: Mechanisms of Action of Blood Irradiated by UV Light on the Human and Animal Organisms [in Russian], Nauka, Leningrad (1986), 207–211.Google Scholar
  84. 84.
    V. I. Karandashov, N. N. Kvitko, O. I. Slinchenko, and N. P. Aleksandrov, Byull. Eksp. Biol. Med., 115, No. 5, 530–532 (1993).Google Scholar
  85. 85.
    R. H. Burdon, Free Radical Biol. Med., 18, 775–794 (1995).CrossRefGoogle Scholar
  86. 86.
    G. V. Babushkina and A. V. Kartelishev, Staged Combination Laser Therapy for Various Types of Ischemic Heart Disease [in Russian], Tekhnika, Moscow (2003).Google Scholar
  87. 87.
    G. I. Klebanov, T. V. Chichuk, Yu. A. Vladimirov, Biol. Membr., 18, 42–50 (2001).Google Scholar
  88. 88.
    L. I. Irzhak, V. V. Gladilov, and N. A. Moisenko, Respiratory Function of Blood under Hypoxic Conditions [in Russian], Meditsina, Moscow (1985).Google Scholar
  89. 89.
    V. Bossi, Arch. Med. Res., 37, 425–436 (2006).CrossRefGoogle Scholar
  90. 90.
    N. K. Zenkov, V. Z. Lankin, and E. B. Men’shikova, Oxidative Stress: Biochemical and Pathophysiological Aspects [in Russian], Nauka/Interperiodika, Moscow (2001).Google Scholar
  91. 91.
    N. K. Smolyaninova, T. I. Karu, and A. V. Zelenin, Dokl. Akad. Nauk SSSR, 315, 1256–1259 (1990).Google Scholar
  92. 92.
    E. Alexandratou, D. Yova, P. Handris, et al., Photochem. Photobiol. Sci., 1, 547–552 (2003).CrossRefGoogle Scholar
  93. 93.
    G. I. Klebanov, T. V. Chichuk, A. N. Osipov, and Yu. A. Vladimirov, Biofizika, 50, 862–866 (2005).Google Scholar
  94. 94.
    T. Ozava, J. J. Lemasters, and A.-L. Niemien, Biosci. Rep., 17, 237–250 (1997).CrossRefGoogle Scholar
  95. 95.
  96. 96.
    N. A. Duzhenkova, in: Primary Radiobiological Processes [in Russian], N. V. Timofeev-Resovskii, ed., Atomizdat, Moscow (1973), 50–83.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of PhysiologyNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations