Journal of Applied Spectroscopy

, Volume 75, Issue 6, pp 832–838 | Cite as

Effect of metallic nanoparticle sizes on the local field near their surface

  • R. A. Dynich
  • A. N. Ponyavina

We have used numerical calculations based on Mie theory to analyze the near field distribution patterns for 4–150 nm spherical silver nanoparticles (nanospheres). We have shown that as the nanoparticle sizes increase, the region where “hot spots” are concentrated is shifted to the forward hemisphere. We have observed a nonmonotonic dependence of the maximum attainable local field enhancement factor on the size of the silver nanospheres. We have determined a correlation between the optimal nanosphere size for the maximum attainable local field enhancement factor and the optical absorption efficiency factor. We have established a nonmonotonic dependence of the optimal size of the nanoparticles and the maximum attainable local field enhancement factor on the refractive index of the surrounding medium.

Key words

nanostructure surface plasmon resonance near field characteristics local field enhancement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Stuart, A. J. Haes, C. R. Yonzon, et al., IEE Proc. Nanobiotechnol., 152, 13–32 (2005).CrossRefGoogle Scholar
  2. 2.
    C. F. Boren and D. R. Huffman, Absorption and Scattering of Light by Small Particles [in Russian], Mir, Moscow (1986).Google Scholar
  3. 3.
    A. Pack, M. Hietschold, and R. Wannemacher, Opt. Commun., 194, 277–287 (2001).CrossRefADSGoogle Scholar
  4. 4.
    M. Quinten, Appl. Phys. B, 73, 245–256 (2001).CrossRefADSGoogle Scholar
  5. 5.
    T. Jensen, L. Kelly, A. Lazaridies, and G. Schatz, J. Cluster Sci., 10, 295–297 (1999).CrossRefGoogle Scholar
  6. 6.
    V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, and V. M. Shalaev, J. Lightwave Technology, 17, 2183–2218 (1999).CrossRefGoogle Scholar
  7. 7.
    A. Ivinskaya, R. Dynich, and A. Ponyavina, Physics, Chemistry and Applications of Nanostructures: Rev. and Short Notes to NANOMEETING-2005, Minsk, 24–27 May 2005, World Scientific, Singapore (2005), pp. 247–250.Google Scholar
  8. 8.
    H. C. van de Hulst, Light Scattering by Small Particles [Russian translation], Inostr. Lit., Moscow (1961).Google Scholar
  9. 9.
    M. I. Mishchenko, L. D. Travis, and A. Lacis, Scattering, Absorption and Emission of Light by Small Particles, University Press, Cambridge (2002).Google Scholar
  10. 10.
    L. G. Astaf'eva, V. A. Babenko, and V. A. Kuzmin, Electromagnetic Scattering in Disperse Media: Inhomogeneous and Anisotropic Particles, Springer-Prexis, Berlin (2003).Google Scholar
  11. 11.
    P. B. Johnson and R. W. Christy, Phys. Rev. B, 12, 4370–4387 (1972).CrossRefADSGoogle Scholar
  12. 12.
    B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, Phys. Rev. B, 24, 649–657 (1981).CrossRefADSGoogle Scholar
  13. 13.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, 107, 668–677 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations