Advertisement

Journal of Applied Spectroscopy

, Volume 75, Issue 4, pp 597–602 | Cite as

Effect of humic acids on phototransformation of methylphenols in water

  • O. N. Chaikovskaya
  • I. V. Sokolova
  • T. V. Sokolova
  • N. V. Yudina
  • E. V. Mal’tseva
  • A. A. Ivanov
Article

Abstract

We have studied photolysis of a mixture of 2-methylphenol (2-MP) and 4-methylphenol (4-MP) in distilled water and in water containing humic acids. The samples were irradiated under different conditions: by monochromatic light with λ ∼ 222, 283, and 308 nm; by polychromatic light from a mercury lamp in the wavelength region 290–600 nm. We have shown that a mixture of methylphenols is efficiently degraded with irradiation by a KrCl exciplex lamp (λrad ∼ 222 nm). Preliminary treatment of peat before extraction of the humic acids has an effect on the extent of photoconversion of the methylphenols. Regardless of the type of humic acids, their presence in solution inhibits photoconversion. The greatest extent of degradation of the methylphenols in aqueous solutions with humic acid additives is detected for irradiation by a KrCl exciplex lamp or a mercury lamp, but it is lower than the extent of degradation of the mixture of methylphenols in water.

Key words

2-methylphenol 4-methylphenol humic acids UV radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Kalabin, L. V. Kanitskaya, and D. F. Kushnarev, Quantitative NMR Spectroscopy of Natural Organic Raw Material and Its Refining Products [in Russian], Khimiya, Moscow (2000), pp. 346–386.Google Scholar
  2. 2.
    M. R. Provenzano, V. D’Orazio, M. Jerzykiewicz, and N. Senesi, Chemosphere, 55, 885–892 (2004).CrossRefGoogle Scholar
  3. 3.
    T. V. Sokolova, O. N. Chaikovskaya, É. A. Sosnin, and I. V. Sokolova, Zh. Prikl. Spektr., 73, No. 5, 566–572 (2006).Google Scholar
  4. 4.
    O. Tchaikovskaya, I. Sokolova, V. Svetlichnyi, E. Karetnikova, E. Fedorova, and N. Kudryasheva, Luminescence (published online/Wiley Interscience), 22, 29–34 (2007).CrossRefGoogle Scholar
  5. 5.
    A. A. Ivanov, N. V. Yudina, O. I. Lomovskii, V. D. Tikhova, and V. P. Fadeeva, Khimiya Tverdogo Topliva, No. 6, 13–19 (2006).Google Scholar
  6. 6.
    M. I. Lomaev, V. S. Skakun, É. A. Sosnin, V. F. Tarasenko, and D. V. Shitts, Pis’ma v Zh. Tekh. Fiz., 25, No. 21, 27–32 (1999).Google Scholar
  7. 7.
    M. V. Erofeev, É. A. Sosnin, V. F. Tarasenko, and D. V. Shitts, Opt. Atm. i Okeana, 13, No. 9, 862–864 (2000).Google Scholar
  8. 8.
    É. A. Sosnin, M. V. Erofeev, V. F. Tarasenko, and D. V. Shitts, Prib. Tekh. Eksp., 6, 1–6 (2002).Google Scholar
  9. 9.
    É. A. Sosnin, M. V. Erofeev, A. A. Lisenko, V. F. Tarasenko, and D. V. Shitts, Opt. Zh., 69, No. 7, 77–80 (2002).Google Scholar
  10. 10.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York (1999).Google Scholar
  11. 11.
    N. M. Émanuel’ and M. G. Kuz’min, Experimental Methods in Chemical Kinetics [in Russian], Izdat. Mosk. Gos. Univ., Moscow (1985), pp. 143–168.Google Scholar
  12. 12.
    O. N. Chaikovskaya, N. B. Sul’timova, P. P. Levin, I. V. Sokolova, and V. A. Kuz’min, Izv. Ross. Akad. Nauk, Ser. Khim., 53, No. 2, 313–317 (2004).Google Scholar
  13. 13.
    M. V. Tregubkina, I. V. Sokolova, O. N. Chaikovskaya, N. S. Kudryasheva, and E. S. Fedorova, Proceedings, Fifth Scientific School on Bogs and the Biosphere [in Russian], TsNTI, Tomsk (2006), pp. 255–261.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • O. N. Chaikovskaya
    • 1
    • 2
  • I. V. Sokolova
    • 1
    • 2
  • T. V. Sokolova
    • 1
  • N. V. Yudina
    • 3
  • E. V. Mal’tseva
    • 3
  • A. A. Ivanov
    • 3
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Siberian Physicotechnical InstituteTomskRussia
  3. 3.Institute of Petroleum Chemistry, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations