Advertisement

Journal of Applied Spectroscopy

, Volume 75, Issue 4, pp 461–482 | Cite as

Nonlinear optical properties of tetrapyrrole compounds and prospects for their application (a review)

  • N. N. Kruk
Article

Abstract

The phenomenological description of second-(χ(2)) and third-order (χ(3)) nonlinear optical phenomena and studies on nonlinear optical properties of tetrapyrrole molecules are reviewed. Issues of the formation of two-photon absorption spectra of tetrapyrrole compounds and ways to synthesize new molecular systems possessing high nonlinear optical parameters are presented and discussed in detail. The experience of use of the nonlinear optical properties of tetrapyrrole compounds in industry, medicine, and biology and future trends in this area are presented and analyzed.

Key words

nonlinear optical phenomena two-photon absorption tetrapyrrole compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press, Boca Raton (1997).Google Scholar
  2. 2.
    W. Denk, J. H. Strickler, and W. W. Webb, Science, 248, 73–76 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol., 21, 1369–1377 (2003).CrossRefGoogle Scholar
  4. 4.
    A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, IEEE J. Sel. Top. Quantum Electron., 7, 971–975 (2001).CrossRefGoogle Scholar
  5. 5.
    N. Kruk, A. Karotki, M. Drobizhev, A. Rebane, G. Isakov, and P. Petrov, in: Modern Problems in Physics [in Russian], B. I. Stepanov Inst. Phys., Minsk (2004), 14–18.Google Scholar
  6. 6.
    Y. R. Shen, Principles of Nonlinear Optics, John Wiley, New York (1984).Google Scholar
  7. 7.
    R. W. Boyd, Nonlinear Optics, Academic Press, Amsterdam (2003).Google Scholar
  8. 8.
    P. A. Chollet, F. Kajzar, and J. L. Moigne, Proc. SPIE Int. Soc. Opt. Eng., 1273, 10089–10098 (1990).Google Scholar
  9. 9.
    T. Yamada, H. Hoshi, K. Ishikawa, H. Takezoe, and A. Fukuda, Jpn. J. Appl. Phys., 34, L299–L304 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    H. Hoshi, K. Hamamoto, T. Yamada, K. Ishikawa, H. Takezoe, A. Fukuda, S. Fang, K. Kohama, and Y. Maruyama, Jpn. J. Appl. Phys., 33, L1555–L1560 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    K. Kumagai, G. Mizutani, H. Tsukioka, T. Yamaguchi, and S. Ushioda, Phys. Rev. B: Condens. Matter Mater. Phys., 48, 14488–14495 (1993).ADSGoogle Scholar
  12. 12.
    H. Hoshi, N. Nakamura, and Y. Matuyama, J. Appl. Phys., 70, 7244–7253 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    U. Liu, Y. Xu, D. Zhu, T. Wada, H. Sasabe, L. Liu, and W. Wang, Thin Solid Films, 244, 943–950 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    R. D. Neuman, P. Shah, and U. Akki, Opt. Lett., 17, 798–805 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    K. S. Suslik, C.-T. Chen, G. R. Meredit, and L.-T. Cheng, J. Am. Chem. Soc., 114, 6928–6930 (1992).CrossRefGoogle Scholar
  16. 16.
    I. D. L. Albert, T. J. Marks, and M. A. Ratner, Chem. Mater., 10, 753–762 (1998).CrossRefGoogle Scholar
  17. 17.
    S. M. LeCours, H.-W. Guan, S. G. DiMagno, C. H. Wang, and M. J. Therein, J. Am. Chem. Soc., 118, 1497–1503 (1996).CrossRefGoogle Scholar
  18. 18.
    S. Priadarshi, M. J. Therein, and D. N. Beratan, J. Am. Chem. Soc., 118, 1504–1510 (1996).CrossRefGoogle Scholar
  19. 19.
    T. E. O. Screen, I. M. Blake, L. H. Rees, W. Clegg, S. J. Borowick, and H. L. Anderson, J. Chem. Soc. Perkin Trans., 1, 320–329 (2002).CrossRefGoogle Scholar
  20. 20.
    Z. Z. Ho, C. Y. Yu, and W. M. Heterington III, J. Appl. Phys., 62, 716–720 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    J. S. Shirk, J. R. Lindle, F. J. Bartoli, C. A. Hoffman, Z. H. Kafafi, and A. W. Snow, Appl. Phys. Lett., 55, 1287–1294 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    J. S. Shirk, J. R. Lindle, F. J. Bartoli, Z. H. Kafafi, and A. W. Snow, in: Materials for Nonlinear Optics: Chemical Perspectives, ACS Symp. Ser. 45, ACS, Washington, DC (1991), 626.Google Scholar
  23. 23.
    J. S. Shirk, J. R. Lindle, F. J. Bartoli, and Z. H. Kafafi, Int. J. Nonlinear Opt. Phys., 1, 699–707 (1992).CrossRefGoogle Scholar
  24. 24.
    J. S. Shirk, J. R. Lindle, F. J. Bartoli, and M. E. Boyle, J. Chem. Phys., 96, 5847–5853 (1992).CrossRefGoogle Scholar
  25. 25.
    R. A. Norwood, J. R. Sounik, J. Popolo, and D. R. Holcomb, Proc. SPIE Int. Soc. Opt. Eng., 1560, 54–63 (1991).ADSGoogle Scholar
  26. 26.
    H. S. Nalwa, T. Saito, A. Kakuta, and T. Iwayanagi, J. Phys. Chem., 97, 10515–10601 (1993).CrossRefGoogle Scholar
  27. 27.
    N. Q. Wang, I. M. Cai, J. R. Helfin, J. W. Wu, D. C. Rodenberger, and A. F. Garito, Polymeric, 32, 1752–1760 (1991).CrossRefGoogle Scholar
  28. 28.
    C. Meloney, H. Byrne, W. M. Dennis, W. Blau, and J. M. Kelly, Chem. Phys., 121, 21–28 (1988).CrossRefGoogle Scholar
  29. 29.
    T. Sakaguchi, Y. Shimizu, M. Miya, T. Fukumi, K. Ohta, and A. Nagata, Chem. Lett., 21, 281–285 (1992).CrossRefGoogle Scholar
  30. 30.
    K. Divakara Rao, S. Ananta Ramakrishna, and P. K. Gupta, Appl. Phys. B: Lasers Opt., 72, 215–219 (2001).ADSGoogle Scholar
  31. 31.
    T. C. Wen, L. C. Hwang, and W. Y. Lin, J. Chin. Chem. Soc., 49, 875–881 (2002).Google Scholar
  32. 32.
    T. C. Wen, L. C. Hwang, W. Y. Lin, C. H. Chen, and C. H. Wu, Chem. Phys., 286, 293–302 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    A. G. Bezerra Jr., I. E. Borissevitch, R. E. de Araujo, A. S. L. Gomes, and Cid B. De Araujo, Chem. Phys. Lett., 318, 511–516 (2000).ADSCrossRefGoogle Scholar
  34. 34.
    F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahiogly, D. Phillips, and J. A. Lacey, Chem. Phys. Lett., 267, 229–233 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    A. Karotki, M. Drobizhev, Yu. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, Phys. Chem. Chem. Phys., 6, 7–10 (2004).CrossRefGoogle Scholar
  36. 36.
    M. Drobizhev, Yu. Stepanenko, Yu. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, J. Am. Chem. Soc., 126, 15352–15353 (2004).CrossRefGoogle Scholar
  37. 37.
    Y. Zhang and X.-Z. You, J. Chem. Res. (S), No. 2, 156–157 (1999).Google Scholar
  38. 38.
    D. V. G. L. N. Rao, F. J. Arando, J. F. Roach, and D. E. Remy, Appl. Phys. Lett., 58, 1241–1248 (1991).ADSCrossRefGoogle Scholar
  39. 39.
    M. Hosoda, T. Wada, A. F. Garito, and H. Sasabe, Jpn. J. Appl. Phys. Lett., 31, L249–L253 (1992).ADSCrossRefGoogle Scholar
  40. 40.
    D. Beljonne, J. E. O’Keefe, P. J. Hamer, R. H. Friend, H. L. Anderson, and J. L. Bredas, J. Chem. Phys., 106, 9439–9460 (1997).ADSCrossRefGoogle Scholar
  41. 41.
    S. J. Martin, H. L. Anderson, and D. D. C. Bradley, Adv. Mater. Opt. Electron., 4, 277–235 (1994).CrossRefGoogle Scholar
  42. 42.
    J. R. G. Torne, S. M. Kueber, R. G. Denning, I. M. Blake, P. N. Taylor, and H. L. Anderson, Chem. Phys., 248, 181–193 (1999).CrossRefGoogle Scholar
  43. 43.
    S. M. Kueber, R. G. Denning, and H. L. Anderson, J. Am. Chem. Soc., 122, 339–347 (2000).CrossRefGoogle Scholar
  44. 44.
    M. Terazima, H. Shimizu, and A. Osuka, J. Appl. Phys., 81, 2946–2951 (1997).ADSCrossRefGoogle Scholar
  45. 45.
    X. Chern Lin and P. D. Laible, Chem. Phys. Lett., 270, 255–262 (1997).ADSCrossRefGoogle Scholar
  46. 46.
    M. Goeppert-Meyer, Ann. Phys. (Leipzig, Ger.), 9, 275–294 (1931).Google Scholar
  47. 47.
    V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, Usp. Fiz. Nauk, 110, 3–43 (1973).Google Scholar
  48. 48.
    E. S. Voropai, V. A. Gaisenok, and I. I. Zholnerevich, in: Spectroscopy and Luminescence of Molecular Systems [in Russian], Bel. Gos. Univ., Minsk (2002), 229–244.Google Scholar
  49. 49.
    M. Kruk, A. Karotki, M. Drobizhev, V. Kuzmitsky, V. Gael, and A. Rebane, J. Lumin., 105, 45–55 (2003).CrossRefGoogle Scholar
  50. 50.
    A. Stone and E. B. Fleisher, J. Am. Chem. Soc., 90, 2735–2748 (1968).CrossRefGoogle Scholar
  51. 51.
    H. N. Fonda, J. V. Gilbert, R. A. Cormier, et al., J. Phys. Chem., 97, 7024–7033 (1993).CrossRefGoogle Scholar
  52. 52.
    V. I. Gael, V. A. Kuzmitsky, and K. N. Solovyov, Zh. Prikl. Spektrosk., 63, No. 6, 932–942 (1996).Google Scholar
  53. 53.
    P. Bour, K. Zaruba, M. Urbanova, V. Setnichka, P. Matejka, Z. Fiedler, V. Kral, and K. Volka, Chirality, 12, 191–198 (2000).CrossRefGoogle Scholar
  54. 54.
    K. N. Solovyov, L. L. Gladkov, A. S. Starukhin, and S. F. Shkirman, Spectroscopy of Porphyrins: Vibrational States [in Russian], Nauka i Tekhnika, Minsk (1985).Google Scholar
  55. 55.
    A. Karotki, M. Drobizhev, M. Kruk, C. W. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, J. Opt. Soc. Am., B, 20, 321–332 (2003).ADSCrossRefGoogle Scholar
  56. 56.
    J. Rodriguez, C. Kirmaier, and D. Holten, J. Am. Chem. Soc., 111, 6500–6506 (1989).CrossRefGoogle Scholar
  57. 57.
    D. Magde, M. W. Windsor, D. Holten, and M. Gouterman, Chem. Phys. Lett., 29, 183–188 (1974).ADSCrossRefGoogle Scholar
  58. 58.
    S. Tobita, Y. Kaizu, H. Kobayashi, and I. Tanaka, J. Chem. Phys., 81, 2962–2969 (1984).ADSCrossRefGoogle Scholar
  59. 59.
    V. A. Kuzmitsky and K. N. Solovyov, Zh. Prikl. Spektrosk., 27, No. 4, 724–730 (1977).Google Scholar
  60. 60.
    M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, J. Chem. Phys., 84, 3901–3915 (1986).ADSCrossRefGoogle Scholar
  61. 61.
    V. A. Kuzmitsky, K. N. Solovyov, and M. P. Tsvirko, in: Porphyrins: Spectroscopy, Electrochemistry, and Application [in Russian], Nauka, Moscow (1987), 7–126.Google Scholar
  62. 62.
    H. Nakatsuji, J. Hasegawa, and M. Hada, J. Chem. Phys., 104, 2321–2329 (1996).ADSCrossRefGoogle Scholar
  63. 63.
    V. A. Kuzmitsky, Zh. Prikl. Spektrosk., 68, No. 5, 581–586 (2001).Google Scholar
  64. 64.
    M. Kruk, A. Karotki, M. Drobizhev, and A. Rebane, Lithuan. J. Phys., 45, 115–123 (2005).Google Scholar
  65. 65.
    M. Drobizhev, A. Karotki, M. Kruk, A. Rebane, E. Nickel, C. W. Spangler, and N. Mamardashvili, Proc. SPIE Int. Soc. Opt. Eng., 4797, 152–162 (2003).Google Scholar
  66. 66.
    R. F. Pasternack, R. P. Huber, P. Boyd, et al., J. Am. Chem. Soc., 94, 4511–4517 (1972).CrossRefGoogle Scholar
  67. 67.
    M. Drobizhev, A. Kartoki, M. Kruk, and A. Rebane, Chem. Phys. Lett., 355, 175–182 (2002).ADSCrossRefGoogle Scholar
  68. 68.
    E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, and M. G. Petersen, Proc. SPIE Int. Soc. Opt. Eng., 3269, 68–75 (1998).ADSGoogle Scholar
  69. 69.
    R. L. Goyan and D. T. Gramb, Photochem. Photobiol., 72, 821–827 (2000).CrossRefGoogle Scholar
  70. 70.
    D. T. Gramg and R. L. Goyan, Proc. SPIE Int. Soc. Opt. Eng., 4262, 41–47 (2001).ADSGoogle Scholar
  71. 71.
    A. A. Andrade, N. M. Barbosa Neto, L. Misoguti, L. De Boni, S. C. Zilio, and C. R. Mendonca, Chem. Phys. Lett., 390, 506–510 (2004).ADSCrossRefGoogle Scholar
  72. 72.
    M. Drobizhev, A. Karotki, M. Kruk, N. Mamardashvili, and A. Rebane, Chem. Phys. Lett., 361, 504–512 (2002).ADSCrossRefGoogle Scholar
  73. 73.
    S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, J. Lumin., 23, 373–392 (1981).CrossRefGoogle Scholar
  74. 74.
    O. G. Khelevina and N. V. Chizhova, in: Progress in Porphyrin Chemistry [in Russian], Vol. 3, NII Khimii SPbGU, St. Petersburg (2001), 72–86.Google Scholar
  75. 75.
    N. Kruk, A. Karotki, M. Drobizhev, A. Rebane, G. Isakov, and P. Petrov, in: Materials of the International Conference “Laser Physics and Applications” [in Russian], May 14–16, 2003, B. I. Stepanov Inst. Phys., Minsk (2003), 263–265.Google Scholar
  76. 76.
    M. Drobizhev, A. Karotki, and A. Rebane, Chem. Phys. Lett., 334, 76–82 (2001).ADSCrossRefGoogle Scholar
  77. 77.
    A. Karotki, M. Kruk, M. Drobizhev, and A. Rebane, J. Modern Opt., 49, 379–390 (2002).ADSCrossRefGoogle Scholar
  78. 78.
    P. D. Zhao, P. Chen, G. Q. Tang, G. L. Zhang, and W. J. Chen, Chem. Phys. Lett., 390, 41–44 (2004).ADSCrossRefGoogle Scholar
  79. 79.
    A. P. Shreve, J. K. Trautman, T. G. Owens, and A. C. Albrecht, Chem. Phys. Lett., 170, 51–56 (1990).ADSCrossRefGoogle Scholar
  80. 80.
    V. A. Kuzmitsky, Zh. Prikl. Spektrosk., 72, No. 3, 339–347 (2005).Google Scholar
  81. 81.
    K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, J. Am. Chem. Soc., 125, 13356–13357 (2003).CrossRefGoogle Scholar
  82. 82.
    A. Karotki, M. Drobizhev, M. Kruk, A. Rebane, E. Nickel, and C. W. Spangler, Proc. SPIE Int. Soc. Opt. Eng., 4612, 143–151 (2002).ADSGoogle Scholar
  83. 83.
    F. Meng, E. Nickel, M. Drobizhev, M. Kruk, A. Karotki, Y. Dzenis, A. Rebane, and C. W. Spangler, Polym. Mater.: Sci. Eng., 89, 462–463 (2003).Google Scholar
  84. 84.
    M. Drobizhev, A. Karotki, M. Kruk, Yu. Dzenis, A. Rebane, F. Meng, E. Nickel, and C. W. Spangler, Proc. SPIE Int. Soc. Opt. Eng., 5211, 63–74 (2003).ADSGoogle Scholar
  85. 85.
    W. R. Dichtel, J. S. Serin, C. Edder, J. M. L. Freshet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, J. Am. Chem. Soc., 126, 5380–5381 (2004).CrossRefGoogle Scholar
  86. 86.
    S. Hecht and J. M. J. Frechet, Angew. Chem. Int. Ed. Engl., 40, 74–91 (2001).CrossRefGoogle Scholar
  87. 87.
    M. Kruk, M. Drobizhev, A. Karotki, and A. Rebane, Proc. SPIE Int. Soc. Opt. Eng., 6727, 67272F-1–67272F-8 (2007).Google Scholar
  88. 88.
    L. A. Martarano, C.-P. Wong, W. DeW. Horrocks, and A. M. P. Goncalves, J. Phys. Chem., 80, 2389–2393 (1976).CrossRefGoogle Scholar
  89. 89.
    J. Aaviksoo, A. Freiberg, S. Savikhin, G. F. Stelmakh, and M. P. Tsvirko, Chem. Phys. Lett., 111, 275–278 (1984).ADSCrossRefGoogle Scholar
  90. 90.
    Y. Kurabayashi, K. Kikuchi, H. Kokubun, Y. Kaizu, and H. Kobayashi, J. Phys. Chem., 88, 1308–1310 (1984).CrossRefGoogle Scholar
  91. 91.
    O. Ohno, Y. Kaizu, and H. Kobayashi, J. Chem. Phys., 82, 1779–1787 (1985).ADSCrossRefGoogle Scholar
  92. 92.
    D. Dini, M. Barthel, and M. Hanack, Eur. J. Org. Chem., No. 12, 3759–3769 (2001).Google Scholar
  93. 93.
    M. Drobizhev, A. Rebane, A. Karotki, and C. W. Spangler, Recent Res. Dev. Appl. Phys., 4, 197–222 (2001).Google Scholar
  94. 94.
    R. W. Shirmer and A. L. Gaeta, J. Opt. Soc. Am. B, 14, 2865–2868 (1997).ADSCrossRefGoogle Scholar
  95. 95.
    R. Bonnett, Chemical Aspects of Photodynamic Therapy, Gordon and Breach Science Publishers, Amsterdam (2000), 305.Google Scholar
  96. 96.
    S. Wan, J. A. Parrish, R. Rox Anderson, and M. Madden, Photochem. Photobiol., 34, 679–681 (1981).Google Scholar
  97. 97.
    L. Kelbauskas and W. Dietel, Photochem. Photobiol., 76, 686–694 (2002).CrossRefGoogle Scholar
  98. 98.
    P. T. Petrov, V. M. Tsarenkov, A. L. Meshcheryakova, et al., Medium for Photodynamic Therapy of Tumors, Fotolon [in Russian], RB Pat. No. 5651 (1999).Google Scholar
  99. 99.
    Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, Kvantovaya Élektron., 29, 227–229 (1999).Google Scholar
  100. 100.
    A. Karotki, “Simultaneous two-photon absorption of tetrapyrrole molecules: from femtosecond coherence experiments to photodynamic therapy,” Ph.D. Dissertation in Physics, Montana State University, Bozeman (2003).Google Scholar
  101. 101.
    C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA, 93, 10763–10768 (1996).ADSCrossRefGoogle Scholar
  102. 102.
    A. V. Reshetnikov, V. I. Svets, and G. V. Ponomarev, in: Progress in Porphyrin Chemistry [in Russian], Vol. 2, NII Khimii SPbGU, St. Petersburg (1999), 70–114.Google Scholar
  103. 103.
    R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, in: Molecular Electronics, Blackwell Science Ltd., Oxford (1997), 439–472.Google Scholar
  104. 104.
    A. Rebane, M. Drobizhev, and A. Karotki, J. Lumin., 98, 341–353 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations