Skip to main content
Log in

Nonlinear optical properties of tetrapyrrole compounds and prospects for their application (a review)

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

The phenomenological description of second-(χ(2)) and third-order (χ(3)) nonlinear optical phenomena and studies on nonlinear optical properties of tetrapyrrole molecules are reviewed. Issues of the formation of two-photon absorption spectra of tetrapyrrole compounds and ways to synthesize new molecular systems possessing high nonlinear optical parameters are presented and discussed in detail. The experience of use of the nonlinear optical properties of tetrapyrrole compounds in industry, medicine, and biology and future trends in this area are presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press, Boca Raton (1997).

    Google Scholar 

  2. W. Denk, J. H. Strickler, and W. W. Webb, Science, 248, 73–76 (1990).

    Article  ADS  Google Scholar 

  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol., 21, 1369–1377 (2003).

    Article  Google Scholar 

  4. A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, IEEE J. Sel. Top. Quantum Electron., 7, 971–975 (2001).

    Article  Google Scholar 

  5. N. Kruk, A. Karotki, M. Drobizhev, A. Rebane, G. Isakov, and P. Petrov, in: Modern Problems in Physics [in Russian], B. I. Stepanov Inst. Phys., Minsk (2004), 14–18.

    Google Scholar 

  6. Y. R. Shen, Principles of Nonlinear Optics, John Wiley, New York (1984).

    Google Scholar 

  7. R. W. Boyd, Nonlinear Optics, Academic Press, Amsterdam (2003).

    Google Scholar 

  8. P. A. Chollet, F. Kajzar, and J. L. Moigne, Proc. SPIE Int. Soc. Opt. Eng., 1273, 10089–10098 (1990).

    Google Scholar 

  9. T. Yamada, H. Hoshi, K. Ishikawa, H. Takezoe, and A. Fukuda, Jpn. J. Appl. Phys., 34, L299–L304 (1995).

    Article  ADS  Google Scholar 

  10. H. Hoshi, K. Hamamoto, T. Yamada, K. Ishikawa, H. Takezoe, A. Fukuda, S. Fang, K. Kohama, and Y. Maruyama, Jpn. J. Appl. Phys., 33, L1555–L1560 (1994).

    Article  ADS  Google Scholar 

  11. K. Kumagai, G. Mizutani, H. Tsukioka, T. Yamaguchi, and S. Ushioda, Phys. Rev. B: Condens. Matter Mater. Phys., 48, 14488–14495 (1993).

    ADS  Google Scholar 

  12. H. Hoshi, N. Nakamura, and Y. Matuyama, J. Appl. Phys., 70, 7244–7253 (1991).

    Article  ADS  Google Scholar 

  13. U. Liu, Y. Xu, D. Zhu, T. Wada, H. Sasabe, L. Liu, and W. Wang, Thin Solid Films, 244, 943–950 (1994).

    Article  ADS  Google Scholar 

  14. R. D. Neuman, P. Shah, and U. Akki, Opt. Lett., 17, 798–805 (1992).

    Article  ADS  Google Scholar 

  15. K. S. Suslik, C.-T. Chen, G. R. Meredit, and L.-T. Cheng, J. Am. Chem. Soc., 114, 6928–6930 (1992).

    Article  Google Scholar 

  16. I. D. L. Albert, T. J. Marks, and M. A. Ratner, Chem. Mater., 10, 753–762 (1998).

    Article  Google Scholar 

  17. S. M. LeCours, H.-W. Guan, S. G. DiMagno, C. H. Wang, and M. J. Therein, J. Am. Chem. Soc., 118, 1497–1503 (1996).

    Article  Google Scholar 

  18. S. Priadarshi, M. J. Therein, and D. N. Beratan, J. Am. Chem. Soc., 118, 1504–1510 (1996).

    Article  Google Scholar 

  19. T. E. O. Screen, I. M. Blake, L. H. Rees, W. Clegg, S. J. Borowick, and H. L. Anderson, J. Chem. Soc. Perkin Trans., 1, 320–329 (2002).

    Article  Google Scholar 

  20. Z. Z. Ho, C. Y. Yu, and W. M. Heterington III, J. Appl. Phys., 62, 716–720 (1987).

    Article  ADS  Google Scholar 

  21. J. S. Shirk, J. R. Lindle, F. J. Bartoli, C. A. Hoffman, Z. H. Kafafi, and A. W. Snow, Appl. Phys. Lett., 55, 1287–1294 (1989).

    Article  ADS  Google Scholar 

  22. J. S. Shirk, J. R. Lindle, F. J. Bartoli, Z. H. Kafafi, and A. W. Snow, in: Materials for Nonlinear Optics: Chemical Perspectives, ACS Symp. Ser. 45, ACS, Washington, DC (1991), 626.

    Google Scholar 

  23. J. S. Shirk, J. R. Lindle, F. J. Bartoli, and Z. H. Kafafi, Int. J. Nonlinear Opt. Phys., 1, 699–707 (1992).

    Article  Google Scholar 

  24. J. S. Shirk, J. R. Lindle, F. J. Bartoli, and M. E. Boyle, J. Chem. Phys., 96, 5847–5853 (1992).

    Article  Google Scholar 

  25. R. A. Norwood, J. R. Sounik, J. Popolo, and D. R. Holcomb, Proc. SPIE Int. Soc. Opt. Eng., 1560, 54–63 (1991).

    ADS  Google Scholar 

  26. H. S. Nalwa, T. Saito, A. Kakuta, and T. Iwayanagi, J. Phys. Chem., 97, 10515–10601 (1993).

    Article  Google Scholar 

  27. N. Q. Wang, I. M. Cai, J. R. Helfin, J. W. Wu, D. C. Rodenberger, and A. F. Garito, Polymeric, 32, 1752–1760 (1991).

    Article  Google Scholar 

  28. C. Meloney, H. Byrne, W. M. Dennis, W. Blau, and J. M. Kelly, Chem. Phys., 121, 21–28 (1988).

    Article  Google Scholar 

  29. T. Sakaguchi, Y. Shimizu, M. Miya, T. Fukumi, K. Ohta, and A. Nagata, Chem. Lett., 21, 281–285 (1992).

    Article  Google Scholar 

  30. K. Divakara Rao, S. Ananta Ramakrishna, and P. K. Gupta, Appl. Phys. B: Lasers Opt., 72, 215–219 (2001).

    ADS  Google Scholar 

  31. T. C. Wen, L. C. Hwang, and W. Y. Lin, J. Chin. Chem. Soc., 49, 875–881 (2002).

    Google Scholar 

  32. T. C. Wen, L. C. Hwang, W. Y. Lin, C. H. Chen, and C. H. Wu, Chem. Phys., 286, 293–302 (2003).

    Article  ADS  Google Scholar 

  33. A. G. Bezerra Jr., I. E. Borissevitch, R. E. de Araujo, A. S. L. Gomes, and Cid B. De Araujo, Chem. Phys. Lett., 318, 511–516 (2000).

    Article  ADS  Google Scholar 

  34. F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahiogly, D. Phillips, and J. A. Lacey, Chem. Phys. Lett., 267, 229–233 (1997).

    Article  ADS  Google Scholar 

  35. A. Karotki, M. Drobizhev, Yu. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, Phys. Chem. Chem. Phys., 6, 7–10 (2004).

    Article  Google Scholar 

  36. M. Drobizhev, Yu. Stepanenko, Yu. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, J. Am. Chem. Soc., 126, 15352–15353 (2004).

    Article  Google Scholar 

  37. Y. Zhang and X.-Z. You, J. Chem. Res. (S), No. 2, 156–157 (1999).

  38. D. V. G. L. N. Rao, F. J. Arando, J. F. Roach, and D. E. Remy, Appl. Phys. Lett., 58, 1241–1248 (1991).

    Article  ADS  Google Scholar 

  39. M. Hosoda, T. Wada, A. F. Garito, and H. Sasabe, Jpn. J. Appl. Phys. Lett., 31, L249–L253 (1992).

    Article  ADS  Google Scholar 

  40. D. Beljonne, J. E. O’Keefe, P. J. Hamer, R. H. Friend, H. L. Anderson, and J. L. Bredas, J. Chem. Phys., 106, 9439–9460 (1997).

    Article  ADS  Google Scholar 

  41. S. J. Martin, H. L. Anderson, and D. D. C. Bradley, Adv. Mater. Opt. Electron., 4, 277–235 (1994).

    Article  Google Scholar 

  42. J. R. G. Torne, S. M. Kueber, R. G. Denning, I. M. Blake, P. N. Taylor, and H. L. Anderson, Chem. Phys., 248, 181–193 (1999).

    Article  Google Scholar 

  43. S. M. Kueber, R. G. Denning, and H. L. Anderson, J. Am. Chem. Soc., 122, 339–347 (2000).

    Article  Google Scholar 

  44. M. Terazima, H. Shimizu, and A. Osuka, J. Appl. Phys., 81, 2946–2951 (1997).

    Article  ADS  Google Scholar 

  45. X. Chern Lin and P. D. Laible, Chem. Phys. Lett., 270, 255–262 (1997).

    Article  ADS  Google Scholar 

  46. M. Goeppert-Meyer, Ann. Phys. (Leipzig, Ger.), 9, 275–294 (1931).

    Google Scholar 

  47. V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, Usp. Fiz. Nauk, 110, 3–43 (1973).

    Google Scholar 

  48. E. S. Voropai, V. A. Gaisenok, and I. I. Zholnerevich, in: Spectroscopy and Luminescence of Molecular Systems [in Russian], Bel. Gos. Univ., Minsk (2002), 229–244.

    Google Scholar 

  49. M. Kruk, A. Karotki, M. Drobizhev, V. Kuzmitsky, V. Gael, and A. Rebane, J. Lumin., 105, 45–55 (2003).

    Article  Google Scholar 

  50. A. Stone and E. B. Fleisher, J. Am. Chem. Soc., 90, 2735–2748 (1968).

    Article  Google Scholar 

  51. H. N. Fonda, J. V. Gilbert, R. A. Cormier, et al., J. Phys. Chem., 97, 7024–7033 (1993).

    Article  Google Scholar 

  52. V. I. Gael, V. A. Kuzmitsky, and K. N. Solovyov, Zh. Prikl. Spektrosk., 63, No. 6, 932–942 (1996).

    Google Scholar 

  53. P. Bour, K. Zaruba, M. Urbanova, V. Setnichka, P. Matejka, Z. Fiedler, V. Kral, and K. Volka, Chirality, 12, 191–198 (2000).

    Article  Google Scholar 

  54. K. N. Solovyov, L. L. Gladkov, A. S. Starukhin, and S. F. Shkirman, Spectroscopy of Porphyrins: Vibrational States [in Russian], Nauka i Tekhnika, Minsk (1985).

    Google Scholar 

  55. A. Karotki, M. Drobizhev, M. Kruk, C. W. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, J. Opt. Soc. Am., B, 20, 321–332 (2003).

    Article  ADS  Google Scholar 

  56. J. Rodriguez, C. Kirmaier, and D. Holten, J. Am. Chem. Soc., 111, 6500–6506 (1989).

    Article  Google Scholar 

  57. D. Magde, M. W. Windsor, D. Holten, and M. Gouterman, Chem. Phys. Lett., 29, 183–188 (1974).

    Article  ADS  Google Scholar 

  58. S. Tobita, Y. Kaizu, H. Kobayashi, and I. Tanaka, J. Chem. Phys., 81, 2962–2969 (1984).

    Article  ADS  Google Scholar 

  59. V. A. Kuzmitsky and K. N. Solovyov, Zh. Prikl. Spektrosk., 27, No. 4, 724–730 (1977).

    Google Scholar 

  60. M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, J. Chem. Phys., 84, 3901–3915 (1986).

    Article  ADS  Google Scholar 

  61. V. A. Kuzmitsky, K. N. Solovyov, and M. P. Tsvirko, in: Porphyrins: Spectroscopy, Electrochemistry, and Application [in Russian], Nauka, Moscow (1987), 7–126.

    Google Scholar 

  62. H. Nakatsuji, J. Hasegawa, and M. Hada, J. Chem. Phys., 104, 2321–2329 (1996).

    Article  ADS  Google Scholar 

  63. V. A. Kuzmitsky, Zh. Prikl. Spektrosk., 68, No. 5, 581–586 (2001).

    Google Scholar 

  64. M. Kruk, A. Karotki, M. Drobizhev, and A. Rebane, Lithuan. J. Phys., 45, 115–123 (2005).

    Google Scholar 

  65. M. Drobizhev, A. Karotki, M. Kruk, A. Rebane, E. Nickel, C. W. Spangler, and N. Mamardashvili, Proc. SPIE Int. Soc. Opt. Eng., 4797, 152–162 (2003).

    Google Scholar 

  66. R. F. Pasternack, R. P. Huber, P. Boyd, et al., J. Am. Chem. Soc., 94, 4511–4517 (1972).

    Article  Google Scholar 

  67. M. Drobizhev, A. Kartoki, M. Kruk, and A. Rebane, Chem. Phys. Lett., 355, 175–182 (2002).

    Article  ADS  Google Scholar 

  68. E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, and M. G. Petersen, Proc. SPIE Int. Soc. Opt. Eng., 3269, 68–75 (1998).

    ADS  Google Scholar 

  69. R. L. Goyan and D. T. Gramb, Photochem. Photobiol., 72, 821–827 (2000).

    Article  Google Scholar 

  70. D. T. Gramg and R. L. Goyan, Proc. SPIE Int. Soc. Opt. Eng., 4262, 41–47 (2001).

    ADS  Google Scholar 

  71. A. A. Andrade, N. M. Barbosa Neto, L. Misoguti, L. De Boni, S. C. Zilio, and C. R. Mendonca, Chem. Phys. Lett., 390, 506–510 (2004).

    Article  ADS  Google Scholar 

  72. M. Drobizhev, A. Karotki, M. Kruk, N. Mamardashvili, and A. Rebane, Chem. Phys. Lett., 361, 504–512 (2002).

    Article  ADS  Google Scholar 

  73. S. S. Dvornikov, V. N. Knyukshto, V. A. Kuzmitsky, A. M. Shulga, and K. N. Solovyov, J. Lumin., 23, 373–392 (1981).

    Article  Google Scholar 

  74. O. G. Khelevina and N. V. Chizhova, in: Progress in Porphyrin Chemistry [in Russian], Vol. 3, NII Khimii SPbGU, St. Petersburg (2001), 72–86.

    Google Scholar 

  75. N. Kruk, A. Karotki, M. Drobizhev, A. Rebane, G. Isakov, and P. Petrov, in: Materials of the International Conference “Laser Physics and Applications” [in Russian], May 14–16, 2003, B. I. Stepanov Inst. Phys., Minsk (2003), 263–265.

    Google Scholar 

  76. M. Drobizhev, A. Karotki, and A. Rebane, Chem. Phys. Lett., 334, 76–82 (2001).

    Article  ADS  Google Scholar 

  77. A. Karotki, M. Kruk, M. Drobizhev, and A. Rebane, J. Modern Opt., 49, 379–390 (2002).

    Article  ADS  Google Scholar 

  78. P. D. Zhao, P. Chen, G. Q. Tang, G. L. Zhang, and W. J. Chen, Chem. Phys. Lett., 390, 41–44 (2004).

    Article  ADS  Google Scholar 

  79. A. P. Shreve, J. K. Trautman, T. G. Owens, and A. C. Albrecht, Chem. Phys. Lett., 170, 51–56 (1990).

    Article  ADS  Google Scholar 

  80. V. A. Kuzmitsky, Zh. Prikl. Spektrosk., 72, No. 3, 339–347 (2005).

    Google Scholar 

  81. K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, J. Am. Chem. Soc., 125, 13356–13357 (2003).

    Article  Google Scholar 

  82. A. Karotki, M. Drobizhev, M. Kruk, A. Rebane, E. Nickel, and C. W. Spangler, Proc. SPIE Int. Soc. Opt. Eng., 4612, 143–151 (2002).

    ADS  Google Scholar 

  83. F. Meng, E. Nickel, M. Drobizhev, M. Kruk, A. Karotki, Y. Dzenis, A. Rebane, and C. W. Spangler, Polym. Mater.: Sci. Eng., 89, 462–463 (2003).

    Google Scholar 

  84. M. Drobizhev, A. Karotki, M. Kruk, Yu. Dzenis, A. Rebane, F. Meng, E. Nickel, and C. W. Spangler, Proc. SPIE Int. Soc. Opt. Eng., 5211, 63–74 (2003).

    ADS  Google Scholar 

  85. W. R. Dichtel, J. S. Serin, C. Edder, J. M. L. Freshet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, J. Am. Chem. Soc., 126, 5380–5381 (2004).

    Article  Google Scholar 

  86. S. Hecht and J. M. J. Frechet, Angew. Chem. Int. Ed. Engl., 40, 74–91 (2001).

    Article  Google Scholar 

  87. M. Kruk, M. Drobizhev, A. Karotki, and A. Rebane, Proc. SPIE Int. Soc. Opt. Eng., 6727, 67272F-1–67272F-8 (2007).

    Google Scholar 

  88. L. A. Martarano, C.-P. Wong, W. DeW. Horrocks, and A. M. P. Goncalves, J. Phys. Chem., 80, 2389–2393 (1976).

    Article  Google Scholar 

  89. J. Aaviksoo, A. Freiberg, S. Savikhin, G. F. Stelmakh, and M. P. Tsvirko, Chem. Phys. Lett., 111, 275–278 (1984).

    Article  ADS  Google Scholar 

  90. Y. Kurabayashi, K. Kikuchi, H. Kokubun, Y. Kaizu, and H. Kobayashi, J. Phys. Chem., 88, 1308–1310 (1984).

    Article  Google Scholar 

  91. O. Ohno, Y. Kaizu, and H. Kobayashi, J. Chem. Phys., 82, 1779–1787 (1985).

    Article  ADS  Google Scholar 

  92. D. Dini, M. Barthel, and M. Hanack, Eur. J. Org. Chem., No. 12, 3759–3769 (2001).

  93. M. Drobizhev, A. Rebane, A. Karotki, and C. W. Spangler, Recent Res. Dev. Appl. Phys., 4, 197–222 (2001).

    Google Scholar 

  94. R. W. Shirmer and A. L. Gaeta, J. Opt. Soc. Am. B, 14, 2865–2868 (1997).

    Article  ADS  Google Scholar 

  95. R. Bonnett, Chemical Aspects of Photodynamic Therapy, Gordon and Breach Science Publishers, Amsterdam (2000), 305.

    Google Scholar 

  96. S. Wan, J. A. Parrish, R. Rox Anderson, and M. Madden, Photochem. Photobiol., 34, 679–681 (1981).

    Google Scholar 

  97. L. Kelbauskas and W. Dietel, Photochem. Photobiol., 76, 686–694 (2002).

    Article  Google Scholar 

  98. P. T. Petrov, V. M. Tsarenkov, A. L. Meshcheryakova, et al., Medium for Photodynamic Therapy of Tumors, Fotolon [in Russian], RB Pat. No. 5651 (1999).

  99. Yu. P. Meshalkin, E. E. Alfimov, N. E. Vasil’ev, A. N. Denisov, V. K. Makukha, and A. P. Ogirenko, Kvantovaya Élektron., 29, 227–229 (1999).

    Google Scholar 

  100. A. Karotki, “Simultaneous two-photon absorption of tetrapyrrole molecules: from femtosecond coherence experiments to photodynamic therapy,” Ph.D. Dissertation in Physics, Montana State University, Bozeman (2003).

    Google Scholar 

  101. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Proc. Natl. Acad. Sci. USA, 93, 10763–10768 (1996).

    Article  ADS  Google Scholar 

  102. A. V. Reshetnikov, V. I. Svets, and G. V. Ponomarev, in: Progress in Porphyrin Chemistry [in Russian], Vol. 2, NII Khimii SPbGU, St. Petersburg (1999), 70–114.

    Google Scholar 

  103. R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, in: Molecular Electronics, Blackwell Science Ltd., Oxford (1997), 439–472.

    Google Scholar 

  104. A. Rebane, M. Drobizhev, and A. Karotki, J. Lumin., 98, 341–353 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kruk.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 4, pp. 433–457, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruk, N.N. Nonlinear optical properties of tetrapyrrole compounds and prospects for their application (a review). J Appl Spectrosc 75, 461–482 (2008). https://doi.org/10.1007/s10812-008-9088-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-008-9088-4

Key words

Navigation