Journal of Applied Spectroscopy

, Volume 75, Issue 4, pp 550–559 | Cite as

Pulsed nuclear magnetic resonance signals in magnetically ordered materials

  • V. S. Kuz’min
  • V. M. Kolesenko
  • E. P. Borbotko


We have obtained an analytical expression for nuclear precession and nuclear echo signals generated in magnetically ordered materials upon resonant excitation of the nuclear subsystem by two pulses of identical amplitude but different durations. We show that in a nuclear subsystem with inhomogeneous broadening of the spectroscopic transition and an inhomogeneous gain distribution, the two-pulse precession and echo signals are split into four and nine components respectively. We have analytically established a correlation between the macroscopic parameters of the components of the two-pulse signals (relative amplitudes, signal formation times) and the microscopic parameters of the magnetically ordered media (inhomogeneous half-width of the spectral line, half-width of the gain distribution function, average gain). The theoretically calculated formation times for the components of the nuclear precession and nuclear echo signals agree with the experimental data obtained for the alloy FeNiCo (70% Co).

Key words

nuclear magnetic resonance two-pulse precession and echo signals magnetically ordered FeNiCo alloys inhomogeneous broadening of a spectroscopic transition inhomogeneous gain distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Kuz’min and G. G. Fedoruk, Nonsteady-State Coherent Phenomena in Paramagnetic Spin Systems [in Russian], Bel. Gos. Univ., Minsk (2001).Google Scholar
  2. 2.
    V. M. Akulin and N. V. Karlov, Intense Resonant Interactions in Quantum Electronics [in Russian], Nauka, Moscow (1987).Google Scholar
  3. 3.
    M. I. Kurkin and E. A. Turov, NMR in Magnetically Ordered Materials and Its Application [in Russian], Nauka, Moscow (1990).Google Scholar
  4. 4.
    A. S. Borovik-Romanov, Yu. M. Bun’kov, B. S. Dumesh et al., Usp. Fiz. Nauk, 142, 537–570 (1984).Google Scholar
  5. 5.
    K. Steenbeck, T. Eich, K. Kirsch, K. O’Donnell, and E. Steinbeiss, Appl. Phys. Lett., 71, 968–970 (1997).CrossRefADSGoogle Scholar
  6. 6.
    D. K. Fowler, D. C. Creagh, R. W. N. Kinnear, and G. V. H. Wilson, Phys. Status Solidi (a), 92, 545–553 (1985).CrossRefGoogle Scholar
  7. 7.
    A. E. Reingardt, V. I. Tsifrinovich, O. V. Novoselov, and V. K. Mal’tsev, Fiz. Tverd. Tela, 25, 3163–3164 (1983).Google Scholar
  8. 8.
    V. N. Berzhanskii, S. V. Kapel’nitskii, V. S. Pokatilov, and S. N. Polulyakh, Fiz. Tverd. Tela, 44, 83–86 (2002).Google Scholar
  9. 9.
    V. O. Golub, V. V. Kotov, and A. N. Pogorelyi, Fiz. Tverd. Tela, 40, 1056–1061 (1998).Google Scholar
  10. 10.
    V. S. Kuz’min, I. Z. Rutkovskii, A. P. Saiko, A. D. Tarasevich, and G. G. Fedoruk, Zh. Éksp. Teor. Fiz., 97, 880–891 (1990).Google Scholar
  11. 11.
    V. S. Kuz’min and V. M. Kolesenko, Fiz. Tverd. Tela, 47, 1994–1997 (2005).Google Scholar
  12. 12.
    A. H. Nayfeh, Introduction to Perturbation Techniques [Russian translation], Mir, Moscow (1984).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. S. Kuz’min
    • 1
  • V. M. Kolesenko
    • 2
  • E. P. Borbotko
    • 1
  1. 1.A. D. Sakharov International State Environmental UniversityMinskBelarus
  2. 2.Joint Institute of Solid State and Semiconductor PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations