Journal of Applied Spectroscopy

, Volume 75, Issue 3, pp 402–406 | Cite as

Complexation of pyrene and anthracene with human blood plasma

  • A. M. Saletskii
  • A. G. Mel’nikov
  • A. B. Pravdin
  • V. I. Kochubei
  • G. V. Meln’ikov


We have studied the interaction between polycyclic aromatic hydrocarbons (pyrene and anthracene) with human serum albumin (HSA) and human blood plasma. We have shown that the increase in the fluorescence intensity and the decrease in the polarity index of pyrene on going from an aqueous solution to a pH 7.4 buffer solution of HSA suggests that polycyclic aromatic hydrocarbons are localized in the hydrophobic microphase of the proteins. The increase in the fluorescence intensity for anthracene and pyrene, and also the decrease in the polarity index of pyrene on going from HSA to blood plasma is connected with the fact that polycyclic aromatic hydrocarbons can bind both to plasma proteins and to plasma lipids. When sodium dodecyl sulfate (SDS) is added to the blood plasma in a concentration greater than the critical micelle concentration, we observe an increase in the fluorescence intensity and the polarity index of pyrene. We hypothesize that this is connected with localization of pyrene near the interface between the hydrophobic and hydrophilic phases of the protein-SDS system. We have established that SDS leads to a change in the structure of blood plasma proteins and promotes escape of polycyclic aromatic hydrocarbons from the protein globules.

Key words

human blood plasma human serum albumin polycyclic aromatic hydrocarbons sodium dodecyl sulfate fluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. E. Dobretsov, Fluorescent Probes in Study of Cells, Membranes, and Lipoproteins [in Russian], Nauk. Dumka, Kiev (1988).Google Scholar
  2. 2.
    A. P. Demchenko, Luminescence and Dynamics of Protein Structure [in Russian], Nauk. Dumka, Kiev (1988).Google Scholar
  3. 3.
    K. Kalyanasundaram and J. K. Thomas, J. Am. Chem. Soc., 99, 2039–2045 (1977).CrossRefGoogle Scholar
  4. 4.
    A. I. Deev, Yu. G. Osis, V. E. Formazyuk, et al., Biofizika, 28, 629–631 (1983).Google Scholar
  5. 5.
    V. Glushko, M. S. R. Thaler, and C. D. Karp, Arch. Biochem. Biophys., 210, 33–42 (1981).CrossRefGoogle Scholar
  6. 6.
    N. L. Bekshin and I. S. Litvinov, Mol. Biologiya, 15, 1188–1193 (1981).Google Scholar
  7. 7.
    D. C. Dong and M. A. Winnik, Photochem. Photobiol. A, 35, 17–21 (1982).CrossRefGoogle Scholar
  8. 8.
    G. V. Mel’nikov, T. I. Gubina, and O. A. Dyachuk, Zh. Fiz. Khim., 80, 1–5 (2006).Google Scholar
  9. 9.
    A. N. Baranov, I. M. Vlasova, and A. M. Saletskii, Zh. Prikl. Spektr., 71, 204–207 (2004).Google Scholar
  10. 10.
    V. M. Mazhul’, E. M. Zaitsev, and D. G. Shcherbin, Biofizika, 45, 965–989 (2000).Google Scholar
  11. 11.
    M. Almgren, F. Grieser, and J. K. Thomas, J. Am. Chem. Soc., 101, 2021–2026 (1979).CrossRefGoogle Scholar
  12. 12.
    G. E. Dobretsov, N. K. Kurek, V. N. Makhov, et al., “Forster energy transfer between fluorescent probes in models of biological membranes,” Preprint FIAN SSSR, Moscow (1987), No. 11.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • A. M. Saletskii
    • 1
  • A. G. Mel’nikov
    • 2
  • A. B. Pravdin
    • 2
  • V. I. Kochubei
    • 2
  • G. V. Meln’ikov
    • 3
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Saratov State UniversitySaratovRussia
  3. 3.Saratov State Technical UniversitySaratovRussia

Personalised recommendations