Journal of Applied Spectroscopy

, Volume 75, Issue 3, pp 341–347 | Cite as

Luminescence of carbazolyl-containing polymers doped with iridium chelates

  • Yu. A. Skryshevskii


White light emission is shown to be obtainable at room temperature through the mixing of poly-N-vinylcarbazole (PVC) host fluorescence with fac-tris(2-phenylpyridyl)Ir(III) [Ir(ppy)3] and bis[2-(2′-benzothienyl)pyridinato-N,C3′](acetylacetonate)iridium (III) [Btp2Ir(acac)] dopant phosphorescence whereas at very low temperature through the superposition of poly-N-epoxypropyl-3,6-dibromocarbazole (3,6-DBrPEPC) host and Btp2Ir(acac) dopant phosphorescence emissions. The balance between basic colors is adjusted by the variation of triplet-emitter dopant concentrations. Spin-allowed singlet-singlet energy transfer from the host to iridium chelate dopants by the Forster mechanism is the dominant process in PVC. Spin-forbidden triplet-singlet transfer by the Forster mechanism from the host to the dopant occurs at low temperatures in 3,6-DBrPEPC due to strong spin-orbit coupling induced by the heavy bromine atoms. Spin-allowed transfer from the same host’s triplet excited state to the iridium chelate occurs via electron exchange at high temperatures.

Key words

luminescence poly(vinylcarbazole) iridium chelate triplet emitter energy transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett., 51, 913–915 (1987).CrossRefADSGoogle Scholar
  2. 2.
    T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, Appl. Phys. Lett., 72, 519–521 (1998).CrossRefADSGoogle Scholar
  3. 3.
    J. Birnstock, J. Blassing, A. Hunze, M. Scheffel, M. Stossel, K. Heuser, G. Wittmann, J. Worle, and A. Winnacker, Appl. Phys. Lett., 78, 3905–3907 (2001).CrossRefADSGoogle Scholar
  4. 4.
    K. Landfester, R. Montenegro, U. Scherf, R. Guntner, U. Asawapirom, S. Patil, D. Neger, and T. Kietzke, Adv. Mater., 14, 651–655 (2002).CrossRefGoogle Scholar
  5. 5.
    Y. Z. Wang, R. G. Sun, F. Meghdadi, G. Leising, and A. J. Epstein, Appl. Phys. Lett., 74, 3613–3615 (1999).CrossRefADSGoogle Scholar
  6. 6.
    B. C. Krummacher, Vi-En Choong, M. K. Mathai, S. A. Choulis, F. So, F. Jermann, T. Fiedler, and M. Zachau, Appl. Phys. Lett., 88, 113506–113508 (2006).CrossRefADSGoogle Scholar
  7. 7.
    C. C. Wu, J. C. Sturm, R. A. Register, and M. E. Thompson, Appl. Phys. Lett., 69, 3117–3119 (1996).CrossRefADSGoogle Scholar
  8. 8.
    J. Kido, K. Honawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett., 64, 815–817 (1994).CrossRefADSGoogle Scholar
  9. 9.
    J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 67, 2281–2283 (1995).CrossRefADSGoogle Scholar
  10. 10.
    Y. Kawamura, S. Yanagida, and S. R. Forrest, J. Appl. Phys., 92, 87–93 (2002).CrossRefADSGoogle Scholar
  11. 11.
    G.-L. Tu, Q.-G. Zhou, Y.-X. Cheng, L.-X. Wang, D.-G. Ma, X.-B. Jing, and F.-S. Wang, Appl. Phys. Lett., 85, 2172–2174 (2004).CrossRefADSGoogle Scholar
  12. 12.
    Y.-H. Xu, J.-B. Peng, J.-X. Jiang, Wei Xu, Wei Yang, and Yong Cao, Appl. Phys. Lett., 87, 193502–193504 (2004).CrossRefADSGoogle Scholar
  13. 13.
    M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature (London), 395, 151–154 (1998).CrossRefADSGoogle Scholar
  14. 14.
    P. A. Lane, L. C. Palilis, D. F. O’Brien, C. Giebeler, A. J. Cadby, D. G. Lidzey, J. Campbell, W. Blau, and D. D. C. Bradley, Phys. Rev. B: Condens. Matter Mater. Phys., 63, 235206–2352113 (2001).ADSGoogle Scholar
  15. 15.
    C.-L. Lee, K. B. Lee, and J.-J. Kim, Appl. Phys. Lett., 77, 2280–2282 (2000).CrossRefADSGoogle Scholar
  16. 16.
    S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy, and M. E. Thompson, J. Appl. Phys., 92, 1570–1575 (2002).CrossRefADSGoogle Scholar
  17. 17.
    S. Blumstengel, F. Meinardi, R. Tubino, M. Gurioli, M. Jandke, and P. Strohriegl, J. Chem. Phys., 115, 3249–3255 (2001).CrossRefADSGoogle Scholar
  18. 18.
    Y.-Y. Noh, C.-L. Lee, J.-J. Kim, and K. Yase, J. Chem. Phys., 118, 2853–2864 (2003).CrossRefADSGoogle Scholar
  19. 19.
    Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Phys. Rev. Lett., 96, 017404–017407 (2006).CrossRefADSGoogle Scholar
  20. 20.
    W.-G. Zhu, Y. Mo, M. Yuan, W. Yang, and Y. Cao, Appl. Phys. Lett., 80, 2045–2047 (2002).CrossRefADSGoogle Scholar
  21. 21.
    G. Peter, H. Bassler, W. Schrof, and H. Port, Chem. Phys., 94, 445–453 (1985).CrossRefGoogle Scholar
  22. 22.
    I. S. Gorban’, T. P. Volkova, A. Ya. Kal’nitskii, and V. N. Yashchuk, Ukr. Fiz. Zh., 29, 1267–1269 (1984).Google Scholar
  23. 23.
    R. D. Burkhart and D. K. Chakraborty, J. Phys. Chem., 94, 4143–4147 (1990).CrossRefGoogle Scholar
  24. 24.
    Yu. A. Skryshevskii and A. Yu. Vakhnin, Fiz. Tverd. Tela, 49, 842–848 (2007).Google Scholar
  25. 25.
    K.-C. Tang, K. L. Liu, and I.-C. Chen, Chem. Phys. Lett., 386, 437–441 (2004).CrossRefADSGoogle Scholar
  26. 26.
    W. J. Finkenzeller, M. E. Thompson, and H. Yersin, Chem. Phys. Lett., 444, 273–279 (2007).CrossRefADSGoogle Scholar
  27. 27.
    B. A. Shashlov, Light and Light Propagation [in Russian], Kniga, Moscow (1986).Google Scholar
  28. 28.
    J. A. Barltrop and J. D. Coyle, Excited States in Organic Chemistry, Wiley, New York (1975).Google Scholar
  29. 29.
    B. P. Lyons, K. S. Wong, and A. P. Monkman, J. Chem. Phys., 118, 4707–4711 (2003).CrossRefADSGoogle Scholar
  30. 30.
    E. J. W. List and G. Leising, Synth. Met., 141, 211–218 (2004).CrossRefGoogle Scholar
  31. 31.
    M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, Oxford University Press, New York (1982).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Institute of PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations