Advertisement

Journal of Applied Spectroscopy

, Volume 75, Issue 2, pp 187–191 | Cite as

Luminescence of biologically active 24-epicastasterone and a model compound

  • N. A. Borisevich
  • S. A. Bagnich
  • T. F. Raichenok
  • V. N. Knyukshto
  • A. V. Baranovskii
  • V. N. Zhabinskii
Article

Abstract

Biologically active brassinosteroid 24-epicastasterone, ring B of which contains a C=O group and has the nπ*-configuration for a low-lying electronic excited state, exhibits rapid fluorescence. The wavelengths of the fluorescence maxima of the steroid dissolved in hexane and acetonitrile are equal to 332 and 394 nm, respectively. The fluorescence lifetime of the steroid dissolved in acetonitrile is τ = 9.9 nsec. Solutions of 24-epibrassinolide do not luminesce. The long-wavelength electronic absorption band λ max abs = 340 nm in the absorption spectrum of an ethanol solution of model compound 2, ring D of which contains a C=O group π*-conjugated with the C=C double bond of ring C, like in the spectrum of the steroid, has a low extinction coefficient. An ethanol solution of 2 does not fluoresce. 24-Epicastasterone at 77 K in ethanol solution exhibits phosphorescence with λ max phos = 447 nm. The phosphorescence decay is exponential with τ = 0.79 msec. Compound 2 also phosphoresces. The phosphorescence spectrum of its ethanol solution has a maximum at 490 nm. The phosphorescence decay is nonexponential in the early stage. The phosphorescence lifetime is 25 msec in the exponential decay region.

Key words

brassinosteroid 24-epicastasterone spectrum absorption fluorescence phosphorescence fluorescence lifetime phosphorescence lifetime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Brosa, Crit. Rev. Biochem. Mol. Biol., 34, 339–358 (1999).CrossRefGoogle Scholar
  2. 2.
    M. A. T. Zullo and G. Adam, Braz. J. Plant Physiol., 14, 143–181 (2002).CrossRefGoogle Scholar
  3. 3.
    R. Azpiroz, Y. Wu, J. C. LoCascio, and K. A. Feldmann, Plant Cell, 10, 219–230 (1998).CrossRefGoogle Scholar
  4. 4.
    M. J. Thompson, W. J. Meudt, N. B. Mandava, S. R. Dutky, W. R. Lusby, and D. W. Spaulding, Steroids, 39, 89–105 (1992).CrossRefGoogle Scholar
  5. 5.
    V. A. Khripach, V. N. Zhabinskii, and A. E. De Groot, Brassinosteroids: A New Class of Plant Hormones, Academic Press, San Diego (1999).Google Scholar
  6. 6.
    C. Brosa, J. M. Capdevlia, and J. Zamora, Tetrahedron, 52, 2435–2448 (1996).CrossRefGoogle Scholar
  7. 7.
    N. A. Broisevich, I. V. Skornyakov, V. A. Khripach, G. B. Tolstorozhev, and V. N. Zhabinskii, Zh. Prikl. Spektrosk., 74, No. 2, 610–616 (2007).Google Scholar
  8. 8.
    N. A. Borisevich, T. F. Raichenok, V. A. Khripach, V. N. Zhabinskii, and G. V. Ivanova, Zh. Prikl. Spektrosk., 75, No. 1, 74–78 (2008).Google Scholar
  9. 9.
    R. P. Litvinovskaya, M. A. Aver’kova, A. V. Baranovskii, and V. A. Khripach, Zh. Org. Khim., 42, 1325–1332 (2006).Google Scholar
  10. 10.
    V. A. Khripach, O. V. Sviridov, A. G. Pryadko, R. P. Litvinovskaya, S. V. Drach, V. D. Matveentsev, T. V. Novik, K. I. Mikhailopulo, V. N. Zhabinskii, M. I. Zavadskaya, M. A. Aver’kova, O. A. Drachenova, and N. M. Chashchina, Bioorg. Khim., 33, 371–378 (2007).Google Scholar
  11. 11.
    N. A. Borisevich, T. F. Raichenok, A. A. Sukhodola, and G. B. Tolstorozhev, Zh. Prikl. Spektrosk., 72, No. 2, 192–197 (2005).Google Scholar
  12. 12.
    K. K. Rebane, Elemental Theory of Vibrational Structure of Spectra of Crystal Impurity Centers [in Russian], Nauka, Moscow (1968).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • N. A. Borisevich
    • 1
  • S. A. Bagnich
    • 1
  • T. F. Raichenok
    • 1
  • V. N. Knyukshto
    • 1
  • A. V. Baranovskii
    • 2
  • V. N. Zhabinskii
    • 2
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of Bioorganic chemistryNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations