Advertisement

Journal of Applied Spectroscopy

, Volume 74, Issue 6, pp 926–928 | Cite as

Films made of substituted azobenzene polycomplexes with cobalt for polarization holography

  • N. A. Davidenko
  • I. I. Davidenko
  • A. N. Popenaka
  • I. A. Savchenko
  • A. N. Shumelyuk
Article
  • 28 Downloads

Abstract

We have studied the possibility of recording holograms in films of the 4-methacroyloxy-(4′-carboxy-3′-hydroxy)-2-chloroazobenzene polycomplex with cobalt, with parallel and orthogonal orientation of the light beam polarization. We have shown that these films can be used as recording media for polarization holography. The characteristic features of relaxation of the diffraction efficiency of the holograms are connected with cistrans isomerization of the azobenzene groups and the characteristic features of structural rearrangement in the polymer matrix. We hypothesize that the information-related characteristics of the studied recording media can be controlled by external electric or magnetic fields, due to the presence of magnetic metal ions within the polymer film.

Key words

metal-containing polymer complexes azobenzene groups holographic recording media polarization holography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. I. Davidenko, N. A. Davidenko, I. A. Savchenko, and V. G. Syromyatnikov, Zh. Prikl. Spektr., 72, No. 4, 499–503 (2005).Google Scholar
  2. 2.
    N. A. Davidenko, I. I. Davidenko, I. A. Savchenko, A. N. Popenaka, and A. A. Yandyuk, Opt. i Spektr., 101, No. 6, 966–973 (2006).Google Scholar
  3. 3.
    N. A. Davidenko, I. A. Savchenko, I. I. Davidenko, A. N. Popenaka, A. N. Shumelyuk, and V. A. Bedarev, Zh. Tekh. Fiz., 77, No. 4, 60–64 (2007).Google Scholar
  4. 4.
    D. V. Uraev, V. I. Shmalhausen, A. N. Simonov, V. P. Shibaev, and A. I. Stakhanov, Proc. SPIE, 5135, 142–150 (2003).CrossRefADSGoogle Scholar
  5. 5.
    A. N. Simonov, D. V. Uraev, V. P. Shibaev, S. G. Kostromin, Quantum Electron., 32, No. 2, 143–147 (2002).CrossRefGoogle Scholar
  6. 6.
    A. N. Simonov, D. V. Uraev, S. G. Kostromin, V. P. Shibaev, and A. I. Stakhanov, Laser Phys., 12, 1296–1299 (2002).Google Scholar
  7. 7.
    S. S. Petrova and V. G. Shaverdova, Zh. Tekh. Fiz., 74, No. 6, 123–125 (2004).Google Scholar
  8. 8.
    Sh. D. Kakichashvili, Polarization Holography [in Russian], Nauka, Leningrad (1989).Google Scholar
  9. 9.
    N. A. Davidenko, I. I. Davidenko, and I. A. Savchenko, Khim. Vysok. Energ., 41, No. 1, 41–46 (2007).Google Scholar
  10. 10.
    A. D. Pomogailo and G. I. Dzhardimaliev, Vysokomol. Soedin. A, 46, 437–453 (2004).Google Scholar
  11. 11.
    R. J. Collier, C. B. Burkhart, and L. H. Lin, Optical Holography [Russian translation], Mir, Moscow (1973).Google Scholar
  12. 12.
    D. V. Uraev, “Dynamics of polarization optical recording in azo-containing polymer films,” Author’s Abstract for dissertation in competition for academic degree of Candidate of Physical-Mathematical Sciences, Moscow (2005).Google Scholar
  13. 13.
    S. Freiberg, F. Lagugne-Labarthet, P. Rochon, and A. Natansohn, Macromolecules, 36, 2680–2688 (2003).CrossRefGoogle Scholar
  14. 14.
    C. Cojocariu and P. Rochon, Macromolecules, 38, 9526–9538 (2005).CrossRefGoogle Scholar
  15. 15.
    H. Ono and N. Kawatsuki, Adv. Technol. Mater. and Mater. Proces., 7, No. 1, 9–16 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. A. Davidenko
    • 1
  • I. I. Davidenko
    • 1
  • A. N. Popenaka
    • 1
  • I. A. Savchenko
    • 1
  • A. N. Shumelyuk
    • 1
  1. 1.Taras Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations