Advertisement

Nonlinear bleachable media for the near IR range based on lead chalcogenide quantum dots (review)

  • A. M. Malyarevich
  • K. V. Yumashev
Article

Abstract

We present a review of results from study of the nonlinear optical properties and relaxation processes in lead chalcogenide quantum dots embedded in glass matrices of various compositions, and also designs for bleachable media based on these materials for Q-switched and mode-locked solid-state lasers in the near IR range. We consider the conditions which should be satisfied by the spectroscopic characteristics of saturable absorbers for realization of passive Q-switching and mode-locking in solid-state lasers.

Key words

semiconductor quantum dots nonlinear spectroscopy ultrafast relaxation processes saturation of absorption bleachable media passive mode-locking passive Q-switching 

References

  1. 1.
    Al. L. Efros and A. L. Efros, Fiz. Tekh. Poluprovodn., 16, No. 7, 1209–1214 (1982).Google Scholar
  2. 2.
    A. I. Ekimov and A. A. Onushchenko, Fiz. Tekh. Poluprovodn., 16, No. 7, 1215–1219 (1982).Google Scholar
  3. 3.
    A. D. Yoffe, Adv. Phys., 42, No. 2, 173–266 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, Cambridge (1998).Google Scholar
  5. 5.
    T. T. Basiev, S. B. Mirov, and V. V. Osiko, IEEE J. Quantum Electron., 24, No. 6, 1052–1069 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    K. Spariosu, W. Chen, R. Stultz, and M. Birnbaum, Opt. Lett., 18, No. 10, 814–816 (1993).ADSGoogle Scholar
  7. 7.
    J. J. Zayhowski and C. I. Dill, Opt. Lett., 19, No. 18, 1427–1429 (1994).ADSGoogle Scholar
  8. 8.
    R. Moncorge, H. Manaa, F. Deghoul, Y. Guyot, Y. Kalisky, S. A. Pollack, E. V. Zharikov, and M. Kokta, in: S. A. Payne and C. Pollock, eds., Adv. Solid State Lasers, OSA TOPS Proceedings, OSA, Washington (1996), 1, 445–447.Google Scholar
  9. 9.
    M. I. Demchuk, V. P. Mikhailov, N. I. Zavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, Opt. Lett., 17, No. 13, 929–930 (1992).ADSGoogle Scholar
  10. 10.
    I. A. Denisov, K. V. Yumashev, R. Moncorge, and B. Ferrand, Appl. Opt., 40, No. 30, 5413–5416 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    A. M. Malyarevich, L. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, Appl. Phys. B, 67, 555–558 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    R. Wu, J. D. Myers, M. D. Myers, B. I. Denker, B. I. Galagan, S. E. Sverchkov, J. A. Hutchinson, and W. Trussel, in: H. Injeyan, U. Keller, and C. Marshall, eds., Adv. Solid State Lasers, OSA TOPS Proceedings, OSA, Washington DC, (2000), 34, pp. 254–256.Google Scholar
  13. 13.
    Ph. Thony, B. Ferrand, and E. Molva, in: W. R. Bosenberg and M. M. Fejer, eds., Adv. Solid State Lasers, OSA TOPS Proceedings, OSA, Washington (1998), 19, pp. 150–152.Google Scholar
  14. 14.
    R. D. Stultz, M. B. Camargo, M. Birnbaum, and M. Kokta, in: B. H. T. Chai and S. A. Payne, Adv. Solid State Lasers, OSA TOPS Proceedings, OSA, Washington (1995), 24, pp. 460–464.Google Scholar
  15. 15.
    K. V. Yumashev, N. N. Posnov, I. A. Denisov, P. V. Prokoshin, and V. P. Mikhailov, Appl. Phys. B, 70, No. 2, 179–184 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    K. V. Yumashev, N. N. Posnov, and V. P. Mikhailov, Appl. Phys. B, 69, 41–44 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    K. V. Yumashev, I. A. Denisov, N. N. Posnov, V. P. Mikhailov, R. Moncorge, D. Vivien, B. Ferrand, and Y. Guyot, J. Opt. Soc. Am. B, 16, No. 12, 2189–2194 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    N. V. Kuleshov, Tenth Conference on Laser Optics, Technical Program, June 26–30, St. Petersburg, Russia (2000), ThA1-p17, p. 60.Google Scholar
  19. 19.
    T.-Y. Tsai and M. Birnbaum, J. Appl. Phys., 87, No. 1, 25–29 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, Opt. Lett., 24, No. 14, 960–962 (1999).ADSGoogle Scholar
  21. 21.
    A. V. Podlipensky, N. V. Kuleshov, V. I. Levchenko, and V. N. Yakimovich, Conference on Lasers and Electro-Optics, Technical Digest, OSA, Washington (2000), pp. 453–454.Google Scholar
  22. 22.
    V. É. Kisel’, V. G. Shcherbitskii, N. V. Kuleshov, L. I. Postnova, and V. I. Levchneko, Zh. Prikl. Spektr., 72, No. 6, 747–751 (2005).Google Scholar
  23. 23.
    T. T. Basiev, S. B. Mirov, and S. A. Sychev, in: V. V. Osiko, ed., Solid State Lasers and New Materials; Proc. SPIE, 1839, 182–197 (1992).Google Scholar
  24. 24.
    K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, Appl. Phys. Lett., 62, No. 22, 2763–2765 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    M. B. Camargo, R. D. Stultz, and M. Birnbaum, in: S. A. Payne and C. Pollock, eds., Adv. Solid State Lasers, OSA TOPS Proceedings, OSA, Washington (1996), 1, 454–457.Google Scholar
  26. 26.
    M. B. Camargo, R. D. Stultz, and M. Birnbaum, Appl. Phys. Lett., 66, No. 22, 2940–2942 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    Y.-K. Kuo, M. Birnbaum, and W. Chen, Appl. Phys. Lett., 65,No. 24, 3060–3062 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    B. I. Denker, G. V. Maksimova, V. V. Osiko, S. E. Sverchkov, and Yu. E. Sverchkov, Kvant. Elektron., 17, No. 8, 959–960 (1990).Google Scholar
  29. 29.
    B. I. Denker, G. V. Maksimova, V. V. Osiko, S. E. Sverchkov, and Yu. E. Sverchkov, Kvant. Elektron., 18, No. 7, 855–858 (1991).Google Scholar
  30. 30.
    R. Wu, D. Rhonebouse, M. J. Myers, S. J. Hamlin, J. D. Myers, and Y. Jiang, in: B. H. T. Chai and S. A. Payne, Adv. Solid State Lasers, OSA TOPS Proceedings, OSA, Washington (1995), 24, pp. 440–444.Google Scholar
  31. 31.
    Z. Zhang, L. Qian, D. Fan, and X. Deng, Appl. Phys. Lett., 60, No. 4, 419–421 (1992).ADSCrossRefGoogle Scholar
  32. 32.
    G. R. Jacobovitz-Veselka, U. Keller, and M. T. Asom, Opt. Lett., 17, No. 24, 1791–1793 (1992).ADSCrossRefGoogle Scholar
  33. 33.
    C. E. Soccolich, M. N. Islam, K. Mollmann, W. Gellermann, and K. R. German, Appl. Phys. Lett., 61, No. 8, 886–888 (1992).ADSCrossRefGoogle Scholar
  34. 34.
    K. L. Vodopyanov, A. V. Lukashev, and C. C. Phillips, Opt. Commun., 95, 87–91 (1993).ADSCrossRefGoogle Scholar
  35. 35.
    F. Konz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A. V. Kharkovskiy, and S. I. Khomenko, Opt. Commun., 103, 398–404 (1993).ADSCrossRefGoogle Scholar
  36. 36.
    U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, IEEE J. Select. Topics in Quantum Electron., 2, No. 3, 435–451 (1996).CrossRefGoogle Scholar
  37. 37.
    S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jen, and J. E. Cunningham, IEEE J. Select. Topics in Quantum Electron., 2, No. 3, 454–464 (1996).CrossRefGoogle Scholar
  38. 38.
    F. X. Kartner, I. D. Jung, and U. Keller, IEEE J. Select. Topics in Quantum Electron., 2, No. 3, 540–555 (1996).CrossRefGoogle Scholar
  39. 39.
    K. V. Yumashev, V. P. Mikhailov, P. V. Prokoshin, S. P. Jmako, and I. V. Bodnar, Appl. Phys. Lett., 65, No. 22, 2768–2770 (1994).ADSCrossRefGoogle Scholar
  40. 40.
    P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, Appl. Phys. Lett., 71, No. 12, 1595–1597 (1997).ADSCrossRefGoogle Scholar
  41. 41.
    J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, Appl. Phys. B, 75, 175–178 (2001).ADSGoogle Scholar
  42. 42.
    A. M. Malyarevich, I. A. Denisov, V. G. Savitsky, K. V. Yumashev, and A. A. Lipovskii, Appl. Opt., 39, 4345–4348 (2000).ADSGoogle Scholar
  43. 43.
    A. M. Malyarevich, P. V. Prokoshin, M. I. Demchyk, K. V. Yumashev, and A. A. Lipovskii, App. Phys. Lett., 78, No. 5, 572–573 (2001).ADSCrossRefGoogle Scholar
  44. 44.
    V. G. Savitski, A. M. Malyarevich, P. V. Prokoshin, K. V. Yumashev, E. Raaben, and A. A. Zhilin, in: C. Marshall, ed., Adv. Solid State Lasers, OSA TOPS Proceedings, OSA, Washington (2001), 50, pp. 522–525.Google Scholar
  45. 45.
    A. M. Malyarevich, V. G. Savitski, P. V. Prokoshin, N. N. Posnov, K. V. Yumashev, E. Raaben, and A. A. Zhilin, J. Opt. Soc. Am. B, 19, 28–32 (2002).ADSCrossRefGoogle Scholar
  46. 46.
    V. G. Savitski, N. N. Posnov, P. V. Prokoshin, A. M. Malyarevich, K. V. Yumashev, M. I. Demchuk, and A. A. Lipovskii, Appl. Phys. B, 75, 841–846 (2002).ADSCrossRefGoogle Scholar
  47. 47.
    M. Gaponenko, A. Troshin, A. Malyarevich, V. Kisel, K. Yumashev, N. Kuleshov, and A. Zhilin, in: EuroPhotonics, Pisa, Italy, Conference Digest, report WeD2 (2006), p. 18.Google Scholar
  48. 48.
    V. G. Savitsky, A. M. Malyarevich, K. V. Yumashev, B. D. Sinclair, and A. A. Lipovskii, Appl. Phys. B, 76, 253–256 (2003).ADSCrossRefGoogle Scholar
  49. 49.
    A. Dementjev, V. Gulbinas, L. Valkunas, I. Motchalov, H. Raaben, and A. Michailovas, Appl. Phys B, 76, 595–599 (2003).ADSCrossRefGoogle Scholar
  50. 50.
    V. G. Savitskii, N. N. Posnov, A. M. Malyarevich, K. V. Yumashev, É. L. Raaben, and A. A. Zhilin, Zh. Prikl. Spektr., 71, No. 1, 76–80 (2004).Google Scholar
  51. 51.
    V. G. Savitsky, A. M. Malyarevich, K. V. Yumashev, V. L. Kalashnikov, B. D. Sinclair, H. Raaben, and A. A. Zhilin, Appl. Phys. B, 79, No. 3, 315–320 (2004).Google Scholar
  52. 52.
    A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, É. L. Raaben, and A. A. Zhilin, Opt. Commun., 241, 449–454 (2004).ADSCrossRefGoogle Scholar
  53. 53.
    A. A. Lagatsky, A. M. Malyarevich, V. G. Savitski, M. S. Gaponenko, K. V. Yumashev, A. A. Zhilin, S. T. A. Brown, and W. Sibbett, IEEE Photonics Technol. Lett., 18, No. 1, 259–261 (2006).CrossRefADSGoogle Scholar
  54. 54.
    M. S. Gaponenko, A. M. Malyarevich, K. V. Yumashev, H. Raaben, A. A. Zhilin, and A. A. Lipovskii, Appl. Opt., 45, No. 3, 536–539 (2006).ADSCrossRefGoogle Scholar
  55. 55.
    I. P. Bilinsky, J. G. Fujimoto, J. N. Walpole, and L. J. Missaggia, Opt. Lett., 23, No. 22, 1766–1768 (1998).ADSGoogle Scholar
  56. 56.
    K. V. Yumashev, N. N. Posnov, I. A. Denisov, P. V. Prokoshin, V. P. Mikhailov, V. S. Gurin, V. B. Prokopenko, and A. A. Alexenko, J. Opt. Soc. Am. B, 17, No. 4, 572–579 (2000).ADSCrossRefGoogle Scholar
  57. 57.
    K. V. Yumashev, V. S. Curin, P. V. Prokoshin, V. B. Prokopenko, and A. A. Alexeenko, Phys. Status Solidi (b), 224, No. 3, 815–818 (2001).ADSCrossRefGoogle Scholar
  58. 58.
    G. Bret and F. Gires, Appl. Phys. Lett., 4, No. 10, 175–176 (1964).ADSCrossRefGoogle Scholar
  59. 59.
    N. Sarukura, Y. Ishida, T. Yanagawa, and H. Nakano, Appl. Phys. Lett., 57, No. 3, 229–230 (1990).ADSCrossRefGoogle Scholar
  60. 60.
    I. P. Bilinsky, R. P. Prasankumar, and J. G. Fujimoto, J. Opt. Soc. Am. B, 16, No. 4, 546–549 (1999).ADSCrossRefGoogle Scholar
  61. 61.
    E. Munin, A. B. Villaverde, and M. Bass, Opt. Commun., 108, 278–282 (1994).ADSCrossRefGoogle Scholar
  62. 62.
    V. A. Zyul’kov, A. É. Kazachenko, S. G. Kotov, D. V. Kovalev, and A. A. Stavrov, Kvant. Elektron., 19, No. 7, 629–630 (1992).Google Scholar
  63. 63.
    N. F. Borrelli and D. W. Smith, J. Non-Cryst. Sol., 180, 25–31 (1994).ADSCrossRefGoogle Scholar
  64. 64.
    B. I. Stepanov, ed., Laser Calculation Methods [in Russian], Nauka i Tekhnika, Minsk (1966), Vol. 2.Google Scholar
  65. 65.
    V. A. Pilipovich and A. A. Kovalev, Lasers with Saturable Filters [in Russian], Nauka i Tekhnika, Minsk (1975).Google Scholar
  66. 66.
    A. E. Siegman, Lasers, University Science Books, Mill Valley USA (1986).Google Scholar
  67. 67.
    A. Szabo and R. A. Stein, J. Appl. Phys., 36, 1562–1566 (1965).ADSCrossRefGoogle Scholar
  68. 68.
    J. J. Degnan, IEEE J. Quantum Electron., 25, 214–220 (1989).ADSCrossRefGoogle Scholar
  69. 69.
    J. J. Degnan, IEEE J. Quantum Electron., 31, 1890–1901 (1995).ADSCrossRefGoogle Scholar
  70. 70.
    M. Hercher, Appl. Opt., 6, 947–954 (1967).ADSGoogle Scholar
  71. 71.
    G. H. C. New and T. B. O’Hare, Phys. Lett., 68A, 27–28 (1978).ADSGoogle Scholar
  72. 72.
    Y.-K. Kuo, M.-F. Huang, and M. Birnbaum, IEEE J. Quantum Electron., 31, 657–663 (1995).ADSCrossRefGoogle Scholar
  73. 73.
    W. Rudolph and H. Weber, Opt. Commun., 54, No. 3, 491–496 (1980).ADSCrossRefGoogle Scholar
  74. 74.
    Y. F. Chen, Y. P. Lan, and H. L. Chang, IEEE J. Quantum Electron., 37, 462–468 (2001).ADSCrossRefGoogle Scholar
  75. 75.
    V. S. Letokhov, Zh. Eksp. Teor. Fiz., 55, 1077–1089 (1968).Google Scholar
  76. 76.
    N. G. Basov, P. G. Kryukov, V. S. Letokhov, and Yu. V. Senatskii, IEEE J. Quantum Electron., 4, 606–609 (1968).ADSCrossRefGoogle Scholar
  77. 77.
    J. A. Fleck, J. Appl. Phys., 39, 3318–3327 (1968).ADSCrossRefGoogle Scholar
  78. 78.
    J. A. Fleck, Phys. Rev. B, 1, 84–100 (1970).ADSCrossRefGoogle Scholar
  79. 79.
    G. H. C. New, Proc. IEEE, 67, 380–396 (1979).ADSGoogle Scholar
  80. 80.
    V. I. Malyshev, V. A Sychev, and V. A. Babenko, Pis’ma v Zh. Eksp. Teor. Fiz., 13, 588–595 (1971).Google Scholar
  81. 81.
    G. H. C. New, IEEE J. Quantum Electron., 10, 115–124 (1974).ADSCrossRefGoogle Scholar
  82. 82.
    F. G. Arthurs, D. J. Bradley, and T. Glynn, Opt. Commun., 12, 136–139 (1974).ADSCrossRefGoogle Scholar
  83. 83.
    P. G. Kryukov and V. S. Letokhov, IEEE J. Quantum Electron., 8, 328–338 (1972).CrossRefGoogle Scholar
  84. 84.
    R. Paschotta and U. Keller, Appl. Phys. B, 73, 653–662 (2001).ADSCrossRefGoogle Scholar
  85. 85.
    G. H. C. New, IEEE J. Quantum Electron., 14, 642–645 (1978).ADSCrossRefGoogle Scholar
  86. 86.
    H. A. Haus, IEEE J. Quantum Electron., 12, 169–176 (1976).ADSCrossRefGoogle Scholar
  87. 87.
    F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng., 34, 2024–2036 (1995).ADSCrossRefGoogle Scholar
  88. 88.
    C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B, 16, 46–56 (1999).ADSCrossRefGoogle Scholar
  89. 89.
    A. Penzkofer, D. Von Der Linde, and A. Laubereau, Opt. Commun., 4, 377–379 (1972).ADSCrossRefGoogle Scholar
  90. 90.
    R. Dalven, Solid State Phys., 28, 179–224 (1973).Google Scholar
  91. 91.
    Landolt-Bornstein, in: O. Madelung, ed., Numerical Data and Functional Relationships in Science and Technology. New Series, Springer, New York (1983), 17, Subvol. F, pp. 155–162.Google Scholar
  92. 92.
    I. Kang and F. W. Wise, J. Opt. Soc. Am. B, 14, 1632–1646 (1997).ADSCrossRefGoogle Scholar
  93. 93.
    A. D. Andreev and A. A. Lipovskii, Phys. Rev. B, 59, No. 23, 15402–15404 (1999).ADSCrossRefGoogle Scholar
  94. 94.
    G. E. Tudury, M. V. Marquezini, L. G. Ferreira, L. C. Barbosa, and C. L. Cesar, Phys. Rev. B, 62, 7357–7364 (2000).ADSCrossRefGoogle Scholar
  95. 95.
    V. C. Reynoso, A. M. de Paula, and R. F. Cuevas, Electron. Lett., 31, 1013–1015 (1995).CrossRefGoogle Scholar
  96. 96.
    A. A. Lipovskii, E. V. Kolobkova, and V. D. Petrikov, Electron. Lett., 33, 101–102 (1997).CrossRefGoogle Scholar
  97. 97.
    A. A. Lipovskii, E. V. Kolobkova, A. Olkhovets, V. D. Petrikov, and F. Wise, Physica E, 5, No. 3, 157–160 (1999).ADSCrossRefGoogle Scholar
  98. 98.
    G. E. Rachkovskaya, G. B. Zakharevich, K. V. Yumashev, A. M. Malyarevich, and M. S. Gaponenko, Steklo i Keramika, No 10, 16–18 (2004).Google Scholar
  99. 99.
    J. Fick and A. Martucci, in: H. S. Nalwa, ed., Encyclopedia of Nanoscience and Nanotechnology, 4, 481–504 (2004).Google Scholar
  100. 100.
    A. A. Onushchenko, M. S. Gaponenko, V. V. Golubkov, A. A. Zhilin, A. M. Malyarevich, G. T. Petrovskii, and K. V. Yumashev, Opt. Zh., 73, No. 9, 4–12 (2006).Google Scholar
  101. 101.
    G. Tamulaitis, V. Gulbinas, G. Kodis, A. Dementjev, L. Valkunas, I. Motchalov, and H. Raaben, J. Appl. Phys., 88, No. 1, 178–182 (2000).ADSCrossRefGoogle Scholar
  102. 102.
    A. M. Malyarevich, Zh. Prikl. Spektr., 73, No. 2, 195–199 (2006).Google Scholar
  103. 103.
    V. G. Savitski, A. M. Malyarevich, K. V. Yumashev, H. Raaben, and A. A. Zhilin, J. Opt. Soc. Am. B, 22, No. 8, 1660–1666 (2005).ADSCrossRefGoogle Scholar
  104. 104.
    K. Wundke, S. Putting, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, Appl. Phys. Lett., 76, 10–12 (2000).ADSCrossRefGoogle Scholar
  105. 105.
    A. M. Malyarevich, M. S. Gaponenko, K. V. Yumashev, A. A. Lagatsky, W. Sibbett, A. A. Zhilin, and A. A. Lipovskii, J. Appl. Phys., 100, 023108 (2006).Google Scholar
  106. 106.
    J. L. Machol, F. W. Wise, R. C. Patel, and D. D. Tanner, Phys. Rev. B, 48, 2819–2822 (1993).ADSCrossRefGoogle Scholar
  107. 107.
    A. M. Malyarevich, V. G. Savitski, M. S. Gaponenko, K. V. Yumashev, A. A. Lagatsky, W. Sibbett, A. A. Lipovskii, H. Raaben, and A. A. Zhilin, in: G. Huber, V. Ya. Panchenko, and I. A. Scherbakov, eds., International Conference on Lasers, Applications, and Technologies 2005: Advanced Lasers and Systems; Proc. SPIE, 6054, 60540Q (2006).Google Scholar
  108. 108.
    A. A. Demidovich, A. P. Shkadarevich, M. B. Danailov, P. Apai, T. Gasmi, V. P. Gribkovskii, A. N. Kuzmin, G. I. Ryabtsev, and L. E. Batay, Appl. Phys. B, 67, 11–15 (1998).ADSCrossRefGoogle Scholar
  109. 109.
    A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, W. Strek, and A. N. Titov, Spectrochim. Acta A, 54, 1711 (1998).CrossRefGoogle Scholar
  110. 110.
    A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. V. Dunina, and A. A. Kornienko, Appl. Phys. B, 86, No. 2, 287–292 (2007).ADSCrossRefGoogle Scholar
  111. 111.
    T. E. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, IEEE J. Quantum Electron., 24, No. 6, 924–932 (1988).ADSCrossRefGoogle Scholar
  112. 112.
    H. Y. Shen, T. Q. Lian, R. R. Zheng, Y. P. Zhou, G. F. Yu, C. H. Huang, H. Liao, and Z. D. Zheng, IEEE J. Quantum Electron., 25, 144 (1989).ADSCrossRefGoogle Scholar
  113. 113.
    G. M. Zverev, Yu. D. Golyaev, E. A. Shalaev, and A. A. Shokin, Neodymium-Doped Yttrium Aluminum Garnet Lasers [in Russian], Radio i Svqz’, Moscow (1985).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Scientific Research Institute of Optical Materials and TechnologiesBelorussian National Technical UniversityMinsk

Personalised recommendations