Advertisement

Journal of Applied Spectroscopy

, Volume 74, Issue 5, pp 760–764 | Cite as

Electroluminescent properties of dibenzoxazolyl biphenyl molecules

  • A. V. Kukhto
  • É. É. Kolesnik
  • I. N. Kukhto
  • V. K. Ol’khovik
  • N. A. Galinovskii
  • V. E. Agabekov
  • S. M. Kazakov
  • A. L. Ivanov
Article
  • 29 Downloads

Abstract

We have measured the energy loss spectra of 4,4′-bis[(E)-1-(1,3-benzoxazol-2-yl)-2-ethenyl]-2-n-hexyloxy biphenyl for interaction with electrons with energies 17.5 eV and 50 eV. We used time-dependent density functional theory to calculate spectra of the singlet transitions, which match the experimental data well. We have shown that the cross section for the long-wavelength transitions is greater than the cross section for the short-wave transitions, which is attractive for efficient excitation by low-energy electrons. Electroluminescence was achieved for the studied compound. The threshold voltage was 3.5 V. Introducing an additional layer of copper phthalocyanine increases the brightness of the luminescence several-fold.

Key words

biphenyl thin film electroluminescence electron-molecule interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Kukhto, Zh. Prikl. Spektr., 70, 151–176 (2003).Google Scholar
  2. 2.
    T. Dobbertin, E. Becker, T. Benstem, G. Ginev, D. Heithecker, H.-H. Johannes, D. Metzdorf, H. Neuner, R. Parashkov, and W. Kowalsky, Thin Solid Films, 442, 132–139 (2003).CrossRefADSGoogle Scholar
  3. 3.
    A. V. Kukhta, S. M. Kazakov, D. V. Murtazaliev, and D. V. Ritchik, Chem. Phys. Lett., 373, 492–497 (2003).Google Scholar
  4. 4.
    C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett., 67, 3853–3855 (1995).CrossRefADSGoogle Scholar
  5. 5.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT (2004).Google Scholar
  6. 6.
    M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys., 108, 4439–4449 (1998).CrossRefADSGoogle Scholar
  7. 7.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefADSGoogle Scholar
  8. 8.
    J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B, 54, 16,533–16,539 (1996).CrossRefGoogle Scholar
  9. 9.
    A. V. Kukhta, I. N. Kukhta, S. A. Bagnich, S. M. Kazakov, V. A. Andreev, O. L. Neyra, and E. Meza, Chem. Phys. Lett., 434, 11–14 (2007).CrossRefADSGoogle Scholar
  10. 10.
    N. A. Borisevich, S. M. Kazakov, A. V. Kukhto, D. V. Murtazaliev, O. V. Khristoforov, V. Ya. Artyukhov, and A. L. Ivanov, Zh. Prikl. Spektr., 71, 626–630 (2004).Google Scholar
  11. 11.
    Zh. D. Chaplanova, Yu. K. Mikhailovskii, V. E. Agabekov, V. K. Ol’khovik, N. A. Galinovskii, and E. A. Gracheva, Zh. Prikl. Spektr., 74, 300–303 (2007).Google Scholar
  12. 12.
    N. A. Borisevich, S. M. Kazakov, A. V. Kukhto, D. V. Murtazaliev, and O. V. Khristoforov, Zh. Prikl. Spektr., 69, 166–171 (2002).Google Scholar
  13. 13.
    A. V. Kukhta, S. M. Kazakov, E. E. Kolesnik, A. I. Mit’kovets, D. V. Murtazaliev, and G. Sorokin, Proc. SPIE, 4747, 224–229 (2002).CrossRefADSGoogle Scholar
  14. 14.
    D. Berner, F. Nuesch, E. Tutis, C. Ma, X. Wang, B. Zhang, and L. Zuppiroli, J. Appl. Phys., 95, 3749–3753 (2004).CrossRefADSGoogle Scholar
  15. 15.
    C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913–915 (1987).CrossRefADSGoogle Scholar
  16. 16.
    G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett., 71, 1762–1764 (1997).CrossRefADSGoogle Scholar
  17. 17.
    A. V. Kukhta, Mol. Cryst. Liq. Cryst., 427, 71–93 (2005).CrossRefGoogle Scholar
  18. 18.
    M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151–154 (1998).CrossRefADSGoogle Scholar
  19. 19.
    X. D. Feng, C. J. Huang, V. Lui, R. S. Khangura, and Z. H. Lu, Appl. Phys. Lett., 86, 143,511–143,513 (2005).Google Scholar
  20. 20.
    Y. Jin, J. Kim, S. H. Park, K. Lee, and H. Suh, Bull. Korean Chem. Soc., 26, 795–801 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. V. Kukhto
    • 1
  • É. É. Kolesnik
    • 1
  • I. N. Kukhto
    • 1
  • V. K. Ol’khovik
    • 2
  • N. A. Galinovskii
    • 2
  • V. E. Agabekov
    • 2
  • S. M. Kazakov
    • 3
  • A. L. Ivanov
    • 3
  1. 1.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinsk
  2. 2.Institute of the Chemistry of New MaterialsNational Academy of Sciences of BelarusMinsk
  3. 3.Chuvash State UniversityCheboksaryRussia

Personalised recommendations