Journal of Applied Spectroscopy

, Volume 74, Issue 5, pp 692–696 | Cite as

Effect of isoelectronic impurities K+ and I on luminescence of CsBr:Eu2+ crystals

  • Yu. V. Zorenko
  • R. M. Turchak


We have investigated the photoluminescence (PL) and photostimulated luminescence (PSL) spectra at 300 K to study the effect of isoelectronic impurities K+ and I on the formation and energy structure of Eu2+-VCs isolated dipole centers and aggregate centers in the form of single crystals of CsEuBr3 in CsBr:Eu2+ single crystals. We have shown that K+ and I impurities in a concentration of 5 mol% do not have a substantial effect on the energy spectrum of isolated dipole centers in CsBr:Eu2+ single crystals and the processes for the formation of such centers during growth of CsBr:Eu single crystals from the melt by the Bridgman method. We have established that in Cs0.95K0.05Br:Eu2+, more favorable conditions are realized for the formation of aggregate centers than in CsBr:Eu2+ and CsBr0.95K0.05Br:Eu2+ single crystals. So in order to improve the storage properties of phosphors based on CsBr:Eu2+, in particular for increasing the efficiency of PSL excitation, it is expedient to dope them with K+ impurity in a concentration up to 5 mol%.

Key words

storage phosphors luminescence CsBr:Eu2+ K+ and I aggregate center 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hackenschmied, G. Schierning, M. Batentschuk, and A. Winnacker, J. Appl. Phys., 93, No. 9, 5109–5112 (2003).CrossRefADSGoogle Scholar
  2. 2.
    Yu. V. Zorenko, R. M. Turchak, and I. V. Konstankevych, Funct. Mater., 10, No. 1, 75–79 (2003).Google Scholar
  3. 3.
    I. P. Antoniv, I. V. Garap’yn, and N. A. Tsal’, Izv. Akad. Nauk SSSR. Ser. Neorg. Mater., 24, No. 10, 1749–1751 (1988).Google Scholar
  4. 4.
    B. G. Korshunov, V. V. Sazonov, and D. B. Drobot, Phase Equilibria in Halide Systems [in Russian], Metallurgiya, Moscow (1979).Google Scholar
  5. 5.
    M. L. Kats, Luminescence and Electron-Hole Processes in Photochemically Colored Crystals of Alkali Halide Compounds [in Russian], Izdat. Sarat. Gos. Univ., Saratov (1960).Google Scholar
  6. 6.
    Yu. V. Zorenko, R. M. Turchak, and I. V. Konstankevych, Funct. Mater., 11, No. 4, 707–709 (2004).Google Scholar
  7. 7.
    Yu. V. Zorenko, R. M. Turchak, and I. V. Konstankevich, Fiz. Tverd. Tela, 46, No. 7, 1189–1193 (2004).Google Scholar
  8. 8.
    E. A. Shuraleva, P. A. Parfianovich, and P. S. Ivakhnenko, Spectroscopy of Crystals [in Russian], Nauka, Moscow (1975), pp. 320–325.Google Scholar
  9. 9.
    Yu. V. Zorenko, R. M. Turchak, W. Gryk, and M. Grinberg, J. Lumin., 106, 313–320 (2004).CrossRefGoogle Scholar
  10. 10.
    P. Avakian and A. Smakula, Phys. Rev., 120, No. 6, 2007–2014 (1960).CrossRefADSGoogle Scholar
  11. 11.
    A. B. Aleksandrova, E. D. Aluker, I. A. Vasil’ev, A. F. Nechaev, and S. A. Chernov, Introduction to Radiation Physical Chemistry of the Surface of Alkali Halide Crystals [in Russian], Zinatne, Riga (1989).Google Scholar
  12. 12.
    M. Nikl, K. Nitsch, and K. Polak, Phys. Rev. B, 51, No. 8, 5192–5199 (1995).CrossRefADSGoogle Scholar
  13. 13.
    F. D. Klement, Izv. Akad. ESSR. Ser. Tekhn. i Fiz.-Mat. Nauk, No. 1, 3–8 (1956).Google Scholar
  14. 14.
    I. V. Garapin, “Radiation resistance of halide compounds of cesium,” Author’s Abstract, Dissertation in competition for the academic degree of Candidate of Physical-Mathematical Sciences, L’vov (1992).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Ivan Franko L’vov National UniversityL’vov

Personalised recommendations