Advertisement

Journal of Applied Spectroscopy

, Volume 74, Issue 4, pp 533–536 | Cite as

Electrooptical effect in polymeric composites containing heterometallic Cu(II)/Mn(II) complexes

  • A. A. Beznishchenko
  • V. G. Makhan’kova
  • N. A. Davidenko
  • I. I. Davidenko
  • V. N. Kokozei
  • A. N. Popenaka
Article
  • 18 Downloads

Abstract

We studied the effect of an electric field on the transmission of linearly polarized light through films of composites based on polyvinylbutyral doped with particles of Cu(II)/Mn(II) complexes with “skeleton” and “planar” structures. The action of an electrostatic field causes light absorption to become anisotropic. The effect increases with increasing distance between the cation and anion. Its sign reverses if the spatial structure of the complex is changed. A phenomenological model is proposed according to which the electrooptical properties of the composites are due to a change in the mutual orientation of complex building blocks on exposure to an external electric field.

Key words

heterometallic complexes film composites d-d-transition electrooptical effect optoelectronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ohkoshi, H. Tokoro, T. Hozumi, Y. Zhang, et al., J. Am. Chem. Soc., 128, No. 1, 270–277 (2006).CrossRefGoogle Scholar
  2. 2.
    J. M. Herrera, V. Marvaud, M. Verdaguer, J. Marrot, M. Kalisz, and C. Mathoniere, Angew. Chem. Int. Ed. Engl., 43, No. 41, 5468–5471 (2004).CrossRefGoogle Scholar
  3. 3.
    B. J. Coe and N. R. M. Curati, Comments Inorg. Chem., 25, No. 5–6, 147–184 (2004).CrossRefGoogle Scholar
  4. 4.
    N. A. Davidenko, V. N. Kokozei, I. I. Davidenko, O. V. Nesterova, and D. V. Shevchenko, Fiz. Tekh. Poluprovodn., 40, No 2, 246–254 (2006).Google Scholar
  5. 5.
    N. A. Davidenko, V. N. Kokozei, I. I. Davidenko, O. V. Nesterova, S. L. Studzinskii, N. G. Spitsyna, and A. S. Lobach, Teor. Eksp. Khim., 42, No. 2, 107–112 (2006).Google Scholar
  6. 6.
    E. L. Aleksandrova, M. Ya. Goikhman, I. V. Podeshvo, and V. V. Kudryavtsev, Fiz. Tekh. Poluprovodn., 39, No. 7, 880–884 (2005).Google Scholar
  7. 7.
    D. V. Konarev, A. Y. Kovalevsky, S. S. Khasanov, G. Saito, D. V. Lopatin, A. V. Umrikhin, A. Otsuka, and R. N. Lyubovskaya, Eur. J. Inorg. Chem., No. 9, 1881–1895 (2006).Google Scholar
  8. 8.
    A. A. Beznischenko, V. G. Makhankova, V. N. Kokozay, J. Jezierska, and A. Ozarowski, in: Proceedings of the XVth Winter School on Coordination Chemistry, Karpacz, Poland, December 4–8 (2006), 95.Google Scholar
  9. 9.
    E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill Book Co., New York (1955).Google Scholar
  10. 10.
    N. A. Davidenko, M. A. Zabolotny, and A. A. Ishchenko, Spectrochim. Acta, Part A, 61, 213–218 (2005).CrossRefGoogle Scholar
  11. 11.
    N. A. Davidenko, N. N. Kuranda, V. A. Pavlov, A. N. Popenaka, and N. G. Chuprina, Pis’ma Zh. Tekh. Fiz., 32, No. 4, 32–39 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. A. Beznishchenko
    • 1
  • V. G. Makhan’kova
    • 1
  • N. A. Davidenko
    • 1
  • I. I. Davidenko
    • 1
  • V. N. Kokozei
    • 1
  • A. N. Popenaka
    • 1
  1. 1.Taras Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations