Journal of Applied Spectroscopy

, Volume 74, Issue 3, pp 321–327 | Cite as

Optimization of conditions for spectral determination of chlorine content in cement-based materials



A combination laser/electrospark method is used for fast determination of chlorine in cement-based materials. Excitation of the spectra is carried out both directly in an ablation plume and when a pulsed electric discharge is applied to it. In both cases, we obtain calibration curves that are linear for the major concentration range of practical importance for the analyte element, up to 1.5%. The chlorine detection limit for the combination discharge approach is 0.05%. We consider the basic steps and characteristic features of the proposed experimental procedures.

Key words

spectral analysis emission spectroscopy laser ablation plasma pulsed electric discharge chlorine cement, concrete 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Alekseev and N. K. Rozental’, Corrosion Resistance of Reinforced Concrete Structures in an Aggressive Industrial Medium [in Russian], Stroiizdat, Moscow (1976).Google Scholar
  2. 2.
    S. N. Alekseev, V. B. Ratinov, N. K. Rozental’, and N. M. Kashurnikov, Steel Corrosion Inhibitors in Reinforced Concrete Structures [in Russian], Stroiizdat, Moscow (1985).Google Scholar
  3. 3.
    S. N. Alekseev, F. M. Ivanov, S. Modry, and P. Schiessel, Durability of Reinforced Concrete in Aggressive Media [in Russian], Stroiizdat, Moscow (1990).Google Scholar
  4. 4.
    H. Wiggenhauser, G. Wilsch, and D. Schaurich, NDT&E Int., 31, 307–313 (1998).CrossRefGoogle Scholar
  5. 5.
    H. Wiggenhauser, G. Wilsch, D. Schaurich, and J. Wustmann, INSIGNT, 42, 436–438 (2000).Google Scholar
  6. 6.
  7. 7.
    M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, Appl. Spectr., 55, 739–744 (2001).CrossRefADSGoogle Scholar
  8. 8.
    L. Dudragne, P. Adam, and J. Amouroux, Appl. Spectr., 52, 1321–1327 (1998).CrossRefADSGoogle Scholar
  9. 9.
    G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, Spectrochim. Acta B, 60, 1132–1139 (2005).CrossRefGoogle Scholar
  10. 10.
    G. P. Arumov, A. Yu. Bukharov, S. M. Pershin et al., Pis’ma v Zh. Tekh. Fiz., 13, 870–874 (1987).ADSGoogle Scholar
  11. 11.
    E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, Spectrochim. Acta B, 57, 1115–1130 (2002).CrossRefGoogle Scholar
  12. 12.
    H. Menke and L. Menke, Introduction to Laser Emission Spectral Microanalysis [Russian translation], Mir, Moscow (1968).Google Scholar
  13. 13.
    O. A. Nassef and H. E. Elsayed-Ali, Spectrochim. Acta B, 60, 1564–1572 (2005).CrossRefGoogle Scholar
  14. 14.
    B. M. Yavorskii and A. A. Detlaf, Handbook of Physics [in Russian], Nauka, Moscow (1980).Google Scholar
  15. 15.
    W. Lochte-Holtgreven, ed., Plasma Diagnostics [Russian translation], Mir, Moscow (1971).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinsk

Personalised recommendations