Journal of Applied Spectroscopy

, Volume 74, Issue 2, pp 237–244 | Cite as

Aggregation and spectral properties of Mg(II) tetracarboxyphthalocyanine in aqueous solutions and solid xerogels

  • S. M. Arabei
  • D. V. Novik
  • T. A. Pavich
  • K. N. Solov’ev


Based on spectroscopic studies of magnesium(II) tetracarboxyphthalocyanine molecules in liquid solutions, we have determined the role of the carboxyl groups and the aqueous medium during formation of associates. We have shown that the Q band of the associated form is split into two components of frequency separated by ∼250 cm−1. The effect of the nature of the gel matrices on the spectral luminescence properties of magnesium(II) tetracarboxyphthalocyanine has been studied by incorporating the pigment into a series of xerogels differing in the chemical structure of the inorganic framework and the nanopore surface area. We discuss the reasons for the appearance of associated forms of the pigment in different xerogels.

Key words

magnesium(II) tetracarboxyphthalocyanine monomer associate sol-gel synthesis nanoporous xerogel absorption spectrum fluorescence spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. L. Hench and J. K. West, Chem. Rev., 90, 33–72 (1990).CrossRefGoogle Scholar
  2. 2.
    A. A. Shaposhnikov, R. T. Kuznetsova, T. N. Kopylova, G. V. Maier, E. N. Tel’minov, T. A. Pavich, and S. M. Arabei, Kvant. Élektron., 34, 715–721 (2004).CrossRefGoogle Scholar
  3. 3.
    K. Dou, X. Sun, X. Wang, R. Parkhill, Y. Guo, and E. T. Knobbe, IEEE J. Quantum Electron., 35, 1004–1014 (1999).CrossRefGoogle Scholar
  4. 4.
    J.-P. Galaup, S. M. Arabei, K. N. Solovyov, T. A. Pavich, and E. A. Makarova, J. Phys. Chem. A, 108, 9510–9515 (2004).CrossRefGoogle Scholar
  5. 5.
    S. K. Lam, M. A. Chan, and D. Lo, Sens. Actuators B, 73, 135–141 (2001).CrossRefGoogle Scholar
  6. 6.
    P. Gregory, J. Porphyr. Phthaloc., 4, 432–437 (2000).CrossRefGoogle Scholar
  7. 7.
    C. G. Claessens, W. J. Blau, M. Cook, M. Hanack, R. J. M. Nolte, T. Torres, and D. Wohrle, Monatshefte fur Chimie, 132, 3–11 (2001).Google Scholar
  8. 8.
    R. Litran, E. Blanco, M. Ramirez-Del-Solar, and L. Esquivias, J. Sol-Gel Sci. Technol., 8, 985–990 (1997).Google Scholar
  9. 9.
    M. A. Garcia-Sanchez and A. Campero, Polyhedron, 19, 2383–2386 (2000).CrossRefGoogle Scholar
  10. 10.
    S. M. Arabei, J. P. Galaup, T. A. Pavich, and K. N. Solovyov, J. Lumin., 94–95, 767–770 (2001).Google Scholar
  11. 11.
    S. N. B. Hodgson, S. M. Tracey, and A. K. Ray, J. Sol-Gel Sci. Technol., 22, 15–22 (2001).CrossRefGoogle Scholar
  12. 12.
    B. N. Achar, G. M. Fohlen, J. A. Parkep, and J. Keshavayya, Indian J. Chem., 27A, 411–416 (1988).Google Scholar
  13. 13.
    V. E. Maizlish, G. P. Shaposhnikov, F. P. Snegireva, E. E. Kolesnikova, and R. P. Smirnova, Izv. Vuzov Khimiya i Khim. Tekhnol., 33, 70–74 (1990).Google Scholar
  14. 14.
    N. Sh. Lebedeva, O. V. Petrova, A. I. V’yugin, V. E. Maizlish, and G. P. Shaposhnikov, Opt. i Spektr., 94, 989–992 (2003).Google Scholar
  15. 15.
    P. S. Vincett, E. M. Voigt, and K. E. Rieckhoff, J. Chem. Phys., 55, 4131–4140 (1971).CrossRefGoogle Scholar
  16. 16.
    A. T. Gradyushko, A. N. Sevchenko, K. N. Solovyov, and M. P. Tsvirko, Photochem. Photobiol., 11, 387–400 (1970).Google Scholar
  17. 17.
    O. V. Petrova, N. Sh. Lebedeva, A. I. V’yugin, V. E. Maizlish, and G. P. Shaposhnikov, Zh. Fiz. Khim., 77, 1594–1598 (2003).Google Scholar
  18. 18.
    N. Sh. Lebedeva, O. V. Petrova, A. I. Vyugin, V. E. Maizlish, and G. P. Shaposhnikov, Thermochim. Acta, 417, 127–132 (2004).CrossRefGoogle Scholar
  19. 19.
    S. P. Shaposhnikov, V. E. Maizlish, and V. P. Kulinich, Zh. Obshch. Khim., 75, 1553–1562 (2005).Google Scholar
  20. 20.
    D. Dini and M. Hanack, in: K. M. Kadish, K. M. Smith and, R. Guilard, eds., The Porphyrin Handbook, Academic Press, Boston (2000), Vol. 17, pp. 1–36.Google Scholar
  21. 21.
    L. I. Solov’eva, G. F. Barsukova, O. L. Lebedev, O. L. Kaliya, and E. A. Luk’yanets, Zh. Prikl. Spektr., 26, 753–754 (1977).Google Scholar
  22. 22.
    P. C. Martin, M. Gouterman, B. V. Pepich, G. E. Renzoni, and D. C. Schindele, Inorg. Chem., 30, 3305–3309 (1991).CrossRefGoogle Scholar
  23. 23.
    V. I. Yuzhakov, Usp. Khim., 61, 1114–1141 (1992).Google Scholar
  24. 24.
    V. V. Sapunov, Zh. Fiz. Khim., 76, 1221–1227 (2002).Google Scholar
  25. 25.
    A. W. Snow, in: K. M. Kadish, K. M. Smith and, R. Guilard, eds., The Porphyrin Handbook, Academic Press, Boston (2000), Vol. 17, pp. 129–176.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. M. Arabei
    • 1
  • D. V. Novik
    • 1
  • T. A. Pavich
    • 1
  • K. N. Solov’ev
    • 1
  1. 1.Institute of Molecular and Atomic Physics (State Scientific Institution)National Academy of Sciences of BelarusMinsk

Personalised recommendations