Journal of Applied Spectroscopy

, Volume 74, Issue 2, pp 180–187 | Cite as

Dispersion interactions, electronic absorption spectra of anthracenes in polar glassy media at 77–300 K, and the change in polarizability upon excitation

  • V. S. Pavlovich


The effect of dispersion interactions on the electronic spectra of organic compounds is analyzed within second-order perturbation theory. A formula is obtained which makes is possible to determine the change in the polarizability of the molecules upon excitation, Δαeg, using data on the effect of the bulk polarizability Pn of the solvent on the position of the electronic spectrum. It is shown that when the solutions are cooled, the long-wavelength shift of the absorption spectra for the studied anthracenes in alcohols is mainly due to dispersion interactions and is caused by an increase in Pn. The possibility of using the new formula for Δαeg is demonstrated for anthracenes as an example. It is found that for anthracene, 1-chloroanthracene, 9,10-dichloroanthracene, 9,10-dibromoanthracene, 9,10-diiodoanthracene Δαeg is 16.5, 16.9, 17.2, 18.6, and 20.2 Å3 respectively.

Key words

dispersion interactions electronic spectrum solvatochromic shift polarizability anthracene haloanthracenes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Sambursky and G. Wolfsohn, Phys. Rev., 62, 357–361 (1942).CrossRefADSGoogle Scholar
  2. 2.
    A. S. Cherkasov, Zh. Fiz. Khim., 29, 2209–2217 (1955).Google Scholar
  3. 3.
    S. R. Veljkovic, Trans. Farad. Soc., 53, 1181–1185 (1957).CrossRefGoogle Scholar
  4. 4.
    E. J. Bowen and J. Sahu, J. Phys. Chem., 63, 4–7 (1959).CrossRefGoogle Scholar
  5. 5.
    E. C. Lim, J. D. Laposa, and J. H. H. Yu, J. Mol. Spectr., 19, 412–420 (1966).CrossRefADSGoogle Scholar
  6. 6.
    N. G. Bakhshiev, O. P. Girin, and I. V. Piterskaya, Opt. i Spektr., 24, 901–909 (1968).Google Scholar
  7. 7.
    N. G. Bakhshiev, Opt. i Spektr., 27, 42–49 (1969).Google Scholar
  8. 8.
    A. S. Cherkasov, Molecular Photonics [in Russian], Nauka, Leningrad (1970), pp. 244–264.Google Scholar
  9. 9.
    W. Liptay, G. Walz, W. Bauman, H.-J. Schlosser, H. Deckers, and N. Detzer, Z. Naturforsch., 26a, 2020–2038 (1971).Google Scholar
  10. 10.
    N. G. Bakhshiev, Spectroscopy of Intermolecular Interactions [in Russian], Nauka, Leningrad (1972).Google Scholar
  11. 11.
    R. Mathies and A. C. Albrecht, J. Chem. Phys., 60, 2500–2508 (1974).CrossRefGoogle Scholar
  12. 12.
    M. Tanaka, I. Tanaka, S. Tai, K. Hamanoue, M. Sumitani, and K. Yoshihara, J. Phys. Chem., 87, 813–816 (1983).CrossRefGoogle Scholar
  13. 13.
    A. Amirav, U. Even, and J. Jortner, Anal. Chem., 54, 1666–1673 (1982).CrossRefGoogle Scholar
  14. 14.
    M. Sonnenschein, A. Amirav, and J. Jortner, J. Phys. Chem., 88, 4214–4218 (1984).CrossRefGoogle Scholar
  15. 15.
    W. R. Lambert, P. M. Felker, J. A. Syage, and A. H. Zewail, J. Chem. Phys., 81, 2195–2208 (1984).CrossRefADSGoogle Scholar
  16. 16.
    T. Imasaka, N. Yamaga, and N. Ishibashi, Anal. Chem., 59, 419–422 (1987).CrossRefGoogle Scholar
  17. 17.
    F. Tanaka, S. Yamashita, S. Hirayama, A. Adachi, and K. Shobatake, Chem. Phys., 131, 435–442 (1989).CrossRefGoogle Scholar
  18. 18.
    V. S. Pavlovich, Dokl. Akad. Nauk BSSR, 33, 404–407 (1989).Google Scholar
  19. 19.
    V. S. Pavlovich, D. T. Kozhich, and T. A. Pavich, Zh. Prikl. Spektr., 66, 197–200 (1999).Google Scholar
  20. 20.
    F. London, Trans. Farad. Soc., 33, 8–26 (1937).CrossRefGoogle Scholar
  21. 21.
    L. Onsager, J. Am. Chem. Soc., 58, 1486–1493 (1936).CrossRefGoogle Scholar
  22. 22.
    T. Abe, Bull. Chem. Soc. Jpn., 38, 1314–1318 (1965).CrossRefGoogle Scholar
  23. 23.
    T. Abe, Y. Amako, T. Nishioka, and H. Azumi, Bull. Chem. Soc. Jpn., 39, 845–846 (1966).CrossRefGoogle Scholar
  24. 24.
    T. Abe, Bull. Chem. Soc. Jpn., 39, 936–939 (1966).CrossRefGoogle Scholar
  25. 25.
    B. M. Uzhinov, Spectrochim. Acta, 26A, 2381–2382 (1970).Google Scholar
  26. 26.
    R. Schmidt, J. Phys. Chem., 100, 8049–8052 (1996).CrossRefGoogle Scholar
  27. 27.
    A. D. Buckingham, Adv. Chem. Phys. (J. O. Hirschfelder, ed., Intermolecular Forces, Wiley, New York/London/ Sydney), 12, 107–142 (1967).CrossRefGoogle Scholar
  28. 28.
    A. Unsold, Z. Physik, 43, 563–574 (1927).CrossRefGoogle Scholar
  29. 29.
    T. Imasaka, D. S. Moore, and T. Vo-Dinh, Pure Appl. Chem., 75, 975–998 (2003).Google Scholar
  30. 30.
    Chemist’s Handbook [in Russian], GNTI Khim. Lit., Leningrad/Moscow (1962), Vol.1, p. 1035.Google Scholar
  31. 31.
    R. J. W. Le Fevre, L. Radom, and G. L. D. Ritchie, J. Chem. Soc. B, No. 6, 595–598 (1967).Google Scholar
  32. 32.
    M. A. Kurzmack and M. M. Malley, Chem. Phys. Lett., 21, 385–387 (1973).CrossRefADSGoogle Scholar
  33. 33.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids [Russian translation], Inostr. Lit., Moscow (1961), Chapter 13, pp. 704–804.Google Scholar
  34. 34.
    L. Premvardhan, E. Papgiannakis, R. G. Hiller, and R. van Grondelle, J. Phys. Chem. B, 109, 15589–15597 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. S. Pavlovich
    • 1
  1. 1.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations