Skip to main content
Log in

Calculation of electronic spectra for intermolecular complexes of 3-aminophthalimide by a modified Hückel molecular orbital method

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

Calculation of the spectra of intermolecular complexes of 3-aminophthalimide is used as an example to show that when hydrogen bonds are present, the resonance integrals for the proton donor and acceptor atoms are different from zero. Theoretical analysis of strained 3-aminophthalimide complexes allowed us to establish the determining role of hydrogen bonds in their formation. Using an intramolecular peptide hydrogen bond as an example, we studied the effect of the solvent on its parameters. In particular, we showed that hydrogen bond formation with a proton-acceptor group of the chelate ring leads to a decrease in the resonance integral, and consequently a decrease in the enthalpy of formation of the intramolecular hydrogen bond, to a significantly greater degree than formation of a hydrogen bond at a proton-donor group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry [Russian translation from English; V. S. Petrosyan, ed.], Mir, Moscow (1991), pp. 37, 40, 55–56.

    Google Scholar 

  2. I. M. Gulis, Laser Spectroscopy [in Russian], Bel. Gos. Univ., Minsk (2002), pp. 102–109.

    Google Scholar 

  3. I. M. Gulis, A. I. Komyak, and K. A. Saechnikov, Zh. Prikl. Spektr., 62, No. 6, 140–145 (1995).

    Google Scholar 

  4. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond [Russian translation from English; V. M. Chulanovskii, ed.], Mir, Moscow (1964).

    Google Scholar 

  5. J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, Valence Theory [Russian translation from English; M. G. Veselov, ed.], Mir, Moscow (1968), pp. 348–357, 450–453.

    Google Scholar 

  6. I. I. Grandberg, Organic Chemistry [in Russian], Drofa (2002), pp. 10–12, 36–38.

  7. A. Streitwieser, Molecular Orbital Theory [Russian translation from English; M. E. Dyatkina, ed.], Mir, Moscow (1965), pp. 42–65, 100–105, 113–126, 197–204.

    Google Scholar 

  8. M. J. S. Dewar, Molecular Orbital Theory of Organic Chemistry [Russian translation from English; M. E. Dyatkina, ed.] Mir, Moscow (1972), pp. 83–103, 125–135, 200–204.

    Google Scholar 

  9. G. A. Segal, ed., Semiempirical Methods of Electronic Structure Calculation [Russian translation from English; A. M. Brodskii, ed.], Mir, Moscow (1980), Vol. 1, pp. 13–46.

    Google Scholar 

  10. R. S. Mulliken, C. A. Rieke, D. Orloff, and H. Orloff, J. Chem. Phys., 17, 1248–1267 (1949).

    Article  Google Scholar 

  11. K. F. Krivul’ko and A. P. Klishchenko, Zh. Prikl. Spektr., 73, 666–669 (2006).

    Google Scholar 

  12. Y. Chen and M. R. Topp, Chem. Phys., 283, 249–268 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Klishchenko.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 6, pp. 735–740, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivul’ko, K.F., Klishchenko, A.P. Calculation of electronic spectra for intermolecular complexes of 3-aminophthalimide by a modified Hückel molecular orbital method. J Appl Spectrosc 73, 822–828 (2006). https://doi.org/10.1007/s10812-006-0161-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-006-0161-6

Key words

Navigation