Journal of Applied Spectroscopy

, Volume 73, Issue 6, pp 822–828 | Cite as

Calculation of electronic spectra for intermolecular complexes of 3-aminophthalimide by a modified Hückel molecular orbital method



Calculation of the spectra of intermolecular complexes of 3-aminophthalimide is used as an example to show that when hydrogen bonds are present, the resonance integrals for the proton donor and acceptor atoms are different from zero. Theoretical analysis of strained 3-aminophthalimide complexes allowed us to establish the determining role of hydrogen bonds in their formation. Using an intramolecular peptide hydrogen bond as an example, we studied the effect of the solvent on its parameters. In particular, we showed that hydrogen bond formation with a proton-acceptor group of the chelate ring leads to a decrease in the resonance integral, and consequently a decrease in the enthalpy of formation of the intramolecular hydrogen bond, to a significantly greater degree than formation of a hydrogen bond at a proton-donor group.

Key words

Hückel molecular orbital method ω technique hydrogen bond universal interactions van der Waals complex complex molecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Reichardt, Solvents and Solvent Effects in Organic Chemistry [Russian translation from English; V. S. Petrosyan, ed.], Mir, Moscow (1991), pp. 37, 40, 55–56.Google Scholar
  2. 2.
    I. M. Gulis, Laser Spectroscopy [in Russian], Bel. Gos. Univ., Minsk (2002), pp. 102–109.Google Scholar
  3. 3.
    I. M. Gulis, A. I. Komyak, and K. A. Saechnikov, Zh. Prikl. Spektr., 62, No. 6, 140–145 (1995).Google Scholar
  4. 4.
    G. C. Pimentel and A. L. McClellan, The Hydrogen Bond [Russian translation from English; V. M. Chulanovskii, ed.], Mir, Moscow (1964).Google Scholar
  5. 5.
    J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, Valence Theory [Russian translation from English; M. G. Veselov, ed.], Mir, Moscow (1968), pp. 348–357, 450–453.Google Scholar
  6. 6.
    I. I. Grandberg, Organic Chemistry [in Russian], Drofa (2002), pp. 10–12, 36–38.Google Scholar
  7. 7.
    A. Streitwieser, Molecular Orbital Theory [Russian translation from English; M. E. Dyatkina, ed.], Mir, Moscow (1965), pp. 42–65, 100–105, 113–126, 197–204.Google Scholar
  8. 8.
    M. J. S. Dewar, Molecular Orbital Theory of Organic Chemistry [Russian translation from English; M. E. Dyatkina, ed.] Mir, Moscow (1972), pp. 83–103, 125–135, 200–204.Google Scholar
  9. 9.
    G. A. Segal, ed., Semiempirical Methods of Electronic Structure Calculation [Russian translation from English; A. M. Brodskii, ed.], Mir, Moscow (1980), Vol. 1, pp. 13–46.Google Scholar
  10. 10.
    R. S. Mulliken, C. A. Rieke, D. Orloff, and H. Orloff, J. Chem. Phys., 17, 1248–1267 (1949).CrossRefGoogle Scholar
  11. 11.
    K. F. Krivul’ko and A. P. Klishchenko, Zh. Prikl. Spektr., 73, 666–669 (2006).Google Scholar
  12. 12.
    Y. Chen and M. R. Topp, Chem. Phys., 283, 249–268 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Belorussian State UniversityMinsk

Personalised recommendations