Advertisement

Journal of Applied Spectroscopy

, Volume 73, Issue 5, pp 760–767 | Cite as

Thermodynamic modeling of the thermal stabilizing effectiveness of metal-containing modifiers in an activated carbon matrix for electrothermal atomic absorption spectrometry

  • M. Yu. Burylin
  • Z. A. Temerdashev
  • A. A. Pupyshev
  • A. A. Kaunova
  • S. A. Obogrelova
Article

Abstract

We have carried out a theoretical and experimental study of pyrolysis curves for electrothermal atomic absorption spectral determination of a number of elements in the presence of metal-containing (Pd, Ni) modifiers in an activated carbon matrix. We have used thermodynamic modeling as the basis for establishing the conditions for a quantitative description of the thermochemical processes in a graphite furnace. The temperatures in the pyrolysis stage for the analyte elements and the patterns we see in the pyrolysis curves match very well.

Key words

graphite furnace suspension chemical modifier thermodynamic modeling activated carbon pyrolysis curve stabilization temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. A. Temerdashev, V. P. Polishchuchenko, and M. Yu. Burylin, Zh. Anal. Khim., 57, No. 7, 715–720 (2002).Google Scholar
  2. 2.
    M. Yu. Burylin, Z. A. Temerdashev, and S. Yu. Burylin, Zh. Anal. Khim., 61, No. 1, 42–49 (2006).Google Scholar
  3. 3.
    A. B. Volynsky, Spectrochim. Acta B, 55, 103–150 (2000).CrossRefGoogle Scholar
  4. 4.
    B. V. L’vov, Spectrochim. Acta B, 55, 1659–1668 (2000).CrossRefGoogle Scholar
  5. 5.
    H. M. Ortner, E. Bulska, U. Rohr, G. Schlemmer, S. Weinbruch, and B. Welz, Spectrochim. Acta B, 57, 1835–1853 (2002).CrossRefGoogle Scholar
  6. 6.
    A. B. Volynsky and R. Wennrich, Spectrochim. Acta B, 57, 1301–1316 (2002).CrossRefGoogle Scholar
  7. 7.
    A. B. Volynsky and M. T. C. de Loos-Vollebregt, Spectrochim. Acta B, 60, 1432–1441 (2005).CrossRefGoogle Scholar
  8. 8.
    A. B. Volynskii, Zh. Anal. Khim., 58, No. 10, 1015–1032 (2003).Google Scholar
  9. 9.
    P. B. Mandjukov, S. L. Tsakovski, V. D. Simeonov, and J. A. Stratis, Spectrochim. Acta B, 50, 1733–1746 (1995).CrossRefGoogle Scholar
  10. 10.
    P. B. Mandjukov, E. T. Vassileva, and V. D. Simeonov, Anal. Chem., 64, No. 21, 2596–2603 (1992).CrossRefGoogle Scholar
  11. 11.
    A. A. Pupyshev, Ukr. Khim. Zh., 71, No. 9–10, 17–24 (2005).Google Scholar
  12. 12.
    M. Yu. Burylin, Z. A. Temerdashev, and V. P. Polishchuchenko, Izv. Vuzov. Severokavk. Region. Estestv. Nauki, No. 4, 6–9 (2001).Google Scholar
  13. 13.
    A. A. Vnukova, M. Yu. Burylin, and Z. A. Temerdashev, Izv. Vuzov. Severokavk. Region. Estestv. Nauki, No. 3, 48–55 (2004).Google Scholar
  14. 14.
    V. I. Nefedov, X-Ray Photoelectron Spectroscopy of Chemical Compounds. Handbook [in Russian], Khimiya, Moscow (1984).Google Scholar
  15. 15.
    I. Rubeska and J. Koreckova, Chem. Listy, 73, No. 10, 1009–1026 (1979).Google Scholar
  16. 16.
    S. A. Obogrelova and A. A. Pupyshev, “Estimate of the degree of applicability of experimental pyrolysis curves of elements for testing theoretical models of thermochemical processes in a graphite furnace,” deposited in VNINITI 20 June 2005, No. 873-B2005, Ural. Gos. Tekh. Univ./UPI, Ekaterinburg (2005).Google Scholar
  17. 17.
    V. A. Orlova, E. M. Sedykh, and V. V. Smirnov, Zh. Anal. Khim., 45, No. 5, 933–941 (1990).Google Scholar
  18. 18.
    N. D. Rus’yanova, Coal Chemistry [in Russian], Nauka, Moscow (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Yu. Burylin
    • 1
  • Z. A. Temerdashev
    • 1
  • A. A. Pupyshev
    • 2
  • A. A. Kaunova
    • 1
  • S. A. Obogrelova
    • 2
  1. 1.Kuban State UniversityKrasnodarRussia
  2. 2.Urals State Technical University/Urals Polytechnical Institute (UPI)EkaterinburgRussia

Personalised recommendations