Advertisement

Journal of Applied Spectroscopy

, Volume 73, Issue 3, pp 388–393 | Cite as

Raman light scattering in hydrogenated metal-carbon composite films

  • V. V. Uglov
  • A. K. Kuleshov
  • M. P. Samtsov
  • M. V. Astashinsakaya
Article

Abstract

We have used Raman scattering, elemental analysis, and structural analysis to study the effect of the concentration of incorporated metals (Cu, Ni) on the ratio of sp2/sp3 carbon bonds in composite hydrogen-containing films a-C:H/Cu and a-C:H/Ni, formed by combining plasma-enhanced vapor phase deposition of carbon and sputtering of the metal, using a mixture of argon and methane or acetylene gases. We have shown that formation of a nanosized structure of metallic crystallites (2–5 nm) in the composite films leads to a significant increase in the fraction of disordered sp3-bonded carbon clusters and a decrease in the linear dimensions of the graphite-like carbon clusters.

Key words

Raman scattering metal-carbon composite films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Robertson, Mater. Sci. Eng., 37, 129–281 (2002).CrossRefGoogle Scholar
  2. 2.
    C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095–14106 (2000).Google Scholar
  3. 3.
    B. Feng, D. M. Cao, W. J. Meng, L. E. Rehn, P. M. Baldo, and G. L. Doll, Thin Solid Films, 389, 210–216 (2001).CrossRefGoogle Scholar
  4. 4.
    I. Gerhards, C. Ronning, U. Vetter, H. Hofsass, H. Gibhardt, G. Eckold, Q. Li, S. T. Lee, Y. L. Huang, and M. Seibt, Surface and Coatings Technology, 158–159, 114–119 (2002).CrossRefGoogle Scholar
  5. 5.
    Y. Pauleau, F. Thiery, P. B. Barna, F. Misjak, A. Kovacs, S. N. Dub, V. V. Uglov, and A. K. Kuleshov, Rev. Adv. Mater. Sci., 6, 140–149 (2004).Google Scholar
  6. 6.
    C. Strondl, N. M. Carvalho, J. Th. M. De Hosson, and G. J. Kolk, Surface and Coatings Technology, 162, 288–293 (2003).CrossRefGoogle Scholar
  7. 7.
    S. Veprek and A. S. Argon, Surface and Coatings Technology, 146–147, 175–182 (2001).CrossRefGoogle Scholar
  8. 8.
    J. Musil, Surface and Coatings Technology, 125, 322–330 (2000).CrossRefGoogle Scholar
  9. 9.
    E. A. Smorgonskii, T. K. Zvonareva, E. I. Ivanova, I. I. Novak, and V. I. Ivanov-Omskii, Fiz. Tverd. Tela, 45, No. 9, 1579–1589 (2003).Google Scholar
  10. 10.
    Rusli, S. F. Yoon, Q. F. Huang, J. Ahn, Q. Zhang, H. Yang, Y. S. Wu, E. J. Teo, T. Osipowicz, and F. Watt, Diamond and Related Mater., 10, 132–138 (2001).CrossRefGoogle Scholar
  11. 11.
    Y. Pauleau, F. Thiery, V. V. Uglov, A. K. Kuleshov, S. N. Dub, and M. P. Samtsov, Rev. Adv. Mater. Sci., 4, 1–8 (2003).CrossRefGoogle Scholar
  12. 12.
    S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray Diffraction and Electronic/Optical Analysis [in Russian], Metallurgiya, Moscow (2002).Google Scholar
  13. 13.
    V. V. Uglov, A. K. Kuleshov, D. P. Rusalsky, M. P. Samzov, and A. N. Dementshenok, Surface and Coating Technology, 158–159, 699–701 (2002).CrossRefGoogle Scholar
  14. 14.
    M. C. Rossi, S. Salvatori, P. Ascarelli, E. Cappelli, and S. Orlando, Diamond and Related Mater., 11, 819–823 (2002).CrossRefGoogle Scholar
  15. 15.
    D. Lin-Vien, N. E. Coltharp, W. G. Fateley, and J. G. Graselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, New York (1991).Google Scholar
  16. 16.
    E. D. Obratsova, M. Fiyii, S. Hayashi, V. L. Kuznetsov, Yu. V. Butenko, and A. L. Chuvilin, Carbon, 35, No. 5–6, 821–828 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. V. Uglov
    • 1
  • A. K. Kuleshov
    • 1
  • M. P. Samtsov
    • 1
  • M. V. Astashinsakaya
    • 1
  1. 1.Belorussian State UniversityMinskBelarus

Personalised recommendations