Advertisement

Journal of Applied Spectroscopy

, Volume 72, Issue 6, pp 893–898 | Cite as

Holographic recording media based on polymer compositions with Fe2O3, ZnO, and CdS nanoparticles

  • N. A. Davidenko
  • Yu. P. Get’manchuk
  • I. N. Itskovskaya
  • E. V. Mokrinskaya
  • V. A. Pavlov
  • N. G. Chuprina
Article

Abstract

We investigated the influence of additions of Fe2O3, ZnO, and CdS nanoparticles in films of holographic recording media based on photosemiconductors (oligomers and co-oligomers of glycidyl carbazole) and a dielectric (copolymer of styrol with octylmethacrylate) that contain an organic compound with intramolecular charge transfer as a sensitizer of photoconductivity in the visible and near-IR regimes on their photoconducting and thermoplastic properties. The photoconduction current for light wavelengths larger than the red boundary of absorption of the nanoparticles is determined by the photogeneration of charge carriers from the sensitizer molecules and by their transport inside and between nanoparticles. The increase in the photosensitivity of films on addition of nanoparticles is attributed to the appearance of an additional channel for the transport of the electrons generated from the photogeneration centers. A new difference between the rheological properties of the films based on organic photosemiconductors and dielectrics has been revealed.

Keywords

holographic recording media photoconductivity nanoparticles oligomers copolymers rheological properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Collier, C. B. Burckhart, and L. H. Lin, Optical Holography, Academic Press, New York— London (1973).Google Scholar
  2. 2.
    Yu. P. Getmanchuk and I. D. Laznikova, Zh. Nauch. Prikl. Fotogr. Kinematogr., 38, No. 1, 42–54 (1993).Google Scholar
  3. 3.
    N. A. Davidenko and A. A. Ishchenko, Teor. Éksp. Khim., 38, No. 2, 84–102 (2002).Google Scholar
  4. 4.
    Yu. P. Get’manchuk, I. N. Itskovskaya, and N. I. Sokolov, Teor. Éksp. Khim., 37, No. 1, 8–10 (2001).Google Scholar
  5. 5.
    Yu. P. Get’manchuk, I. I. Davidenko, N. A. Davidenko, E. V. Mokrinskaya, D. D. Mysyk, and R. D. Mysyk, Teor. Éksp. Khim., 40, No. 1, 7–11 (2004).Google Scholar
  6. 6.
    M. I. Bodnarchuk, M. V. Kovalenko, A. L. Stroyuk, and S. Ya. Kuchmii, Teor. Éksp. Khim., 40, No. 5, 279–284 (2004).Google Scholar
  7. 7.
    D. D. Mysyk, I. F. Perepichka, D. F. Perepichka, M. R. Bryce, A. F. Popov, L. M. Goldenberg, and A. J. Moore, J. Org. Chem., 64, No. 19, 6937–6950 (1999).CrossRefGoogle Scholar
  8. 8.
    J. K. Leland and A. J. Bard, J. Phys. Chem., 91, No. 19, 5076–5083 (1987).Google Scholar
  9. 9.
    A. L. Raevskaya, A. L. Stroyuk, and S. Ya. Kuchmii, Teor. Éksp. Khim., 39, NO. 3, 153–160 (2003).Google Scholar
  10. 10.
    L. M. Panasyuk and A. M. Nastas, Opt. Spektrosk., 94, No. 6, 1025–1028 (2003).Google Scholar
  11. 11.
    N. G. Kuvshinskii, N. A. Davidenko, and V. M. Komko, Physics of Amorphous Molecular Semiconductors [in Russian], Lybid’, Kiev (1994).Google Scholar
  12. 12.
    N. F. Uvarov and V. V. Boldyrev, Usp. Khim., 70, No. 4, 307–329 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • N. A. Davidenko
    • 1
  • Yu. P. Get’manchuk
    • 1
  • I. N. Itskovskaya
    • 1
  • E. V. Mokrinskaya
    • 1
  • V. A. Pavlov
    • 1
  • N. G. Chuprina
    • 1
  1. 1.Taras Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations