Journal of Applied Spectroscopy

, Volume 72, Issue 6, pp 840–847 | Cite as

Oscillation spectra of seed NaCl crystals in aqueous solutions



Using the flicker-noise method (FNM), we investigated the oscillations of clusters in aqueous solutions of NaCl in the range of concentrations from 0.1 to 26.0 mass %. It has been established that in the solutions oscillators whose masses are similar to the masses of the models of aggregates of solvate clusters of ion pairs (SCIP) of salt with a different water content are present. In diluted solutions (<10%), the elementary SCIP has the form NaCl· 40H2O. For the entire range of concentrations the SCIPs are given by structures based on the cubic system of the sodium chloride system. The base structure for them is a cube formed from 12 SCIPs of salt. The largest cluster revealed by the FNM method for all investigated concentrations of salt had a mass of ≈1.5 million D. The presence of NaCl in water leads to a collapse of its cluster structure, except for the smallest clusters (H2O)10…11, whose concentration increases with temperature or solution concentration. The distribution of SCIPs changes dramatically at a temperature above 300 K. The possible structures of SCIPs are given and the mechanism of their formation is discussed.


oscillations of clusters in solutions solvate clusters of ion pairs of salt seed NaCl crystals cluster-formation energy distribution of clusters in solution flicker-noise spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chemical Encyclopedia [in Russian], Vol. 1, Sovetskaya Entsiklopediya, Moscow (1990).Google Scholar
  2. 2.
    N. A. Izmailov, Electrochemistry of Solutions [in Russian], Khimiya, Moscow (1976).Google Scholar
  3. 3.
    A. Shiryaev, D. L. Pagan, J. D. Gunton, A. Saxena, and T. Lookman, J. Chem. Phys., 122, 234911 (2005).Google Scholar
  4. 4.
    G. M. Bartenev and Yu. V. Zelenev, Physics and Mechanics of Polymers [in Russian], Vysshaya Shkola, Moscow (1983).Google Scholar
  5. 5.
    O. S. Zaitsev, General Chemistry. State of a Substance and Chemical Reactions [in Russian], Khimiya, Moscow (1990).Google Scholar
  6. 6.
    J. Campbell, Modern General Chemistry [Russian translation], Vol. 3, Mir, Moscow (1975).Google Scholar
  7. 7.
    W. L. Jorgensen, J. Chandrasekar, and J. Madura, J. Chem. Phys., 79, 926–931 (1983).CrossRefADSGoogle Scholar
  8. 8.
    D. J. Wales and M. P. Hodges, Chem. Phys. Lett., 65, 286–290 (1998).Google Scholar
  9. 9.
    A. V. Descherevsky, A. A. Lukk, A. Y. Sidorin, G. V. Vstovsky, and S. F. Timashev, Natural Hazards and Earth System Sci., 20, 159–164 (2002).Google Scholar
  10. 10.
    I. V. Savel’ev, Course of General Physics. Vol. 1. Mechanics, Vibrations and Waves, Molecular Physics [in Russian], Nauka, Moscow (1973).Google Scholar
  11. 11.
    Formel und Tabellen für die Sekundarstufen I und II, Paetec, Gesellschaft für Bildung und Technik mbH, 5 überabr. Aufl., Berlin (1994).Google Scholar
  12. 12.
    K. V. Zubova, A. V. Zubov, and V. A. Zubov, Zh. Prikl. Spektrosk., 72, No. 3, 300–307 (2005).Google Scholar
  13. 13.
    W. Glenz, A. Peterlin, and W. Wilke, J. Polym. Sci., A2, 9, 1243–1247 (1971).Google Scholar
  14. 14.
    K. P. Mishchenko and A. A. Ravdel’ (Eds.), Concise Handbook of Physical and Chemical Quantities [in Russian], Khimiya, Leningrad (1967).Google Scholar
  15. 15.
    G. H. Peslherbe, B. M. Ladanyi, and J. T. Hynes, Chem. Phys., 258, 201–224 (2000).CrossRefGoogle Scholar
  16. 16.
    R. D. Oparin, M. V. Fedotova, and V. N. Trostin, Zh. Org. Khim., No. 1, 17–24 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.AIST H & C GmbH, Groß GievitzGermany

Personalised recommendations