Advertisement

Journal of Applied Spectroscopy

, Volume 72, Issue 6, pp 809–813 | Cite as

Anti-stokes luminescence of solid AgCl0.95I0.05 solutions

  • O. V. Ovchinnikov
  • A. B. Evlev
  • M. A. Efimova
  • V. G. Klyuev
  • A. N. Latyshev
  • A. N. Utekhin
  • A. M. Kholkina
Article
  • 15 Downloads

Abstract

An anti-Stokes luminescence band with λmax = 515 nm of microcrystals of solid AgCl0.95I0.05 solutions excited by a radiation flux of density 1013–1015 quanta/cm2·sec in the range 600–800 nm at 77 K was detected. It is shown that the intensity of this luminescence and the frequency of its excitation depend on the prior UV-irradiation of samples. Analysis of the stimulated-photoluminescence spectra and the anti-Stokes luminescence excitation spectra of the indicated microcrystals has shown that to the centers of anti-Stokes luminescence excitation correspond local levels in the forbidden band of the crystals. These states are apparently due to the atomic and molecular disperse silver particles that can be inherent in character or formed as a result of a low-temperature photochemical process.

Keywords

anti-Stokes luminescence low-temperature photochemical process AgCl0.95I0.05 solid solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. W. Tutt and T. F. Boggest, Prog. Quantum Electron., 17, 299–338 (1993).CrossRefGoogle Scholar
  2. 2.
    Yu. P. Chukova, Anti-Stokes Luminescence and New Possibilities of Its Application [in Russian], Sovetskoe Radio, Moscow (1980).Google Scholar
  3. 3.
    S. A. Blanton, M. A. Hines, M. E. Schmidt, and P. J. Guyot-Sionnest, J. Luminesc., 70, 253–268 (1996).CrossRefGoogle Scholar
  4. 4.
    V. Yu. Ivanov, Yu. S. Semenov, M. Surma, and M. Godlewski, Phys. Rev. B, 54, 4696–4701 (1996).CrossRefADSGoogle Scholar
  5. 5.
    Yu. P. Ravikovich, A. A. Gladyshchuk, K. I. Rusakov, S. A. Filonovich, M. Zh. M. Gomes, D. V. Talapin, A. L. Rogach, and A. Aikhmyuller, Zh. Prikl. Spektrosk., 69, 383–387 (2002).Google Scholar
  6. 6.
    I. V. Ignatiev, I. E. Kozin, H. Wen Ren, S. Sugon, and Y. Masumoto, Phys. Rev. B, 20, R14001–R14004 (1999).Google Scholar
  7. 7.
    V. V. Ovsyankin and P. P. Feofilov, Dokl. Akad. Nauk SSSR, 174, 787–790 (1967).Google Scholar
  8. 8.
    V. V. Ovsyankin and P. P. Feofilov, Pis’ma Zh. E’ksp. Teor. Fiz., 14, 548–551 (1971).Google Scholar
  9. 9.
    I. A. Akimov and A. V. Shablya, Zh. Nauch. Prikl. Fotogr. Kinematogr., 2, 364–365 (1968).Google Scholar
  10. 10.
    V. G. Klyuev, M. A. Kushnir, and A. N. Latyshev, Zh. Nauch. Prikl. Fotogr., 46, 49–54 (2001).Google Scholar
  11. 11.
    A. N. Latyshev, M. A. Kushnir, and V. V. Bokarev, Opt. Spektrosk., 31, 364–366 (1982).Google Scholar
  12. 12.
    A. N. Latyshev, O. V. Ovchinnikov, and S. S. Okhotnikov, Zh. Prikl. Spektrosk., 70, 721–724 (2003).Google Scholar
  13. 13.
    A. N. Latyshev, O. V. Ovchinnikov, S. S. Okhotnikov, M. S. Smirnov, and V. G. Klyuev, Prib. Tekh. E’ksp., 6, 119–124 (2004).Google Scholar
  14. 14.
    A. N. Latyshev, O. V. Ovchinnikov, and M. S. Smirnov, Kondens. Sredy Mezhfazn. Granitsy, 6, 70–74 (2003).Google Scholar
  15. 15.
    P. V. Meiklyar, Physical Processes in the Formation of Latent Photographic Images [in Russian], Nauka, Moscow (1972).Google Scholar
  16. 16.
    A. N. Latyshev, Zh. Nauch. Prikl. Fotogr., 46, 3–12 (2001).Google Scholar
  17. 17.
    V. G. Klyuev and A. N. Latyshev, Zh. Nauch. Prikl. Fotogr., 46, 30–35 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • O. V. Ovchinnikov
    • 1
  • A. B. Evlev
    • 1
  • M. A. Efimova
    • 1
  • V. G. Klyuev
    • 1
  • A. N. Latyshev
    • 1
  • A. N. Utekhin
    • 1
  • A. M. Kholkina
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations