Journal of Applied Spectroscopy

, Volume 72, Issue 5, pp 716–722 | Cite as

Phonon-Assisted Photoluminescence in a Spherical Nanocrystal

  • L. C. Fai
  • V. Teboul
  • A. Monteil
  • S. Maabou


Using the matrix density in the representation of path integrals for an electron, the multiphoton nonlinear absorption light coefficient in the second order of interaction energy with polar optical phonons is derived. This coefficient describes any electron interaction mechanism with phonons. From the interaction mechanism, the main role is played by dimensional resonance when the electron continuously absorbs energy from the field as a result of synchronizing its oscillation with the field. This dimensional resonance is possible when the frequency characterizing the laser field is a multiple of the phonon frequency. Whether a photon is absorbed or emitted, the initial level from where the transition occurs defines the temperature dependence. The absorption spectrum has the form of stripes whose intensity depends on the resonance character. The most pronounced absorption is at the triple resonance, where values of radiation and oscillatory and optical phonon frequencies are equal.


optical phonons photoluminescence dimensional resonance path integral absorption coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Fuchs and K. L. Kliewer, Phys. Rev. A6, 140, 2076A (1965).Google Scholar
  2. 2.
    A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys. Rev. Lett., 19, No.54, 2118 (1985).Google Scholar
  3. 3.
    L. Wendler, A. V. Chaplin, R. Haupt, O. Hipolito, J. Phys.: Cond. Matt., 5, 4817 (1993).ADSGoogle Scholar
  4. 4.
    L. Wendler, A. V. Chaplin, R. Haupt, O. Hipolito, J. Phys.: Cond. Matt., 5, 8031 (1995).ADSGoogle Scholar
  5. 5.
    S. Mukhopadhyay and A. Chatterjee, J. Phys.: Cond. Matt., 8, 4017 (1996).ADSGoogle Scholar
  6. 6.
    V. M. Buimistrov and V. P. Oleinik, Fiz. Tekh. Poluprovodn., 1, No.1, 85–96 (1967).Google Scholar
  7. 7.
    M. G. Bawendi, M. L. Wilson, L. Rothberg, P. J. Carrol, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, Phys. Rev. Lett., 65, 1623 (1990).CrossRefADSGoogle Scholar
  8. 8.
    M. Nirmal, C. B. Murray, D. J. Norris, and M. G. Bawendi, Z. Phys. D, 26, 361 (1993).CrossRefADSGoogle Scholar
  9. 9.
    V. A. Klukanov and E. P. Pokatilov, Zh. Eksp. Teor. Fiz., 60, 312–325 (1971).Google Scholar
  10. 10.
    R. P. Feynmann, R. W. Hellwarth, C. K. Iddings, and P. M. Platzman, Phys. Rev., 127, 1004 (1962).ADSGoogle Scholar
  11. 11.
    G. Kh. Kitaeva, K. A. Kuznetsov, A. N. Penin, and A. V. Shepelev, Phys. Rev. B, 65, 054304 (2002).CrossRefADSGoogle Scholar
  12. 12.
    O. F. Schirmer, O. Thiemann, and M. Wohlecke, J. Phys. Chem. Solids, 52, 185 (1991).CrossRefADSGoogle Scholar
  13. 13.
    O. F. Schirmer and D. von der Linde, Appl. Phys. Lett., 33, 35 (1978).CrossRefADSGoogle Scholar
  14. 14.
    H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B, 40, 11909 (1989).CrossRefADSGoogle Scholar
  15. 15.
    A. Dhar and A. Mansingh, J. Appl. Phys., 68, 5804 (1990).CrossRefADSGoogle Scholar
  16. 16.
    I. Sh. Akhmadulin, V. A. Golenishchev-Kutuzov, and S. A. Migachev, Fiz. Tverd. Tela, 40, 1109 (1998).Google Scholar
  17. 17.
    V. L. Malevich and E. M. Finstein, Opt. Spektrosk., 35, No.3, 591–592 (1973).Google Scholar
  18. 18.
    S. I. Breper and V. A. Pazdzerski, Nauchni Trudi Tashkentskogo Gosuniversiteta, 447, 117 (1973).Google Scholar
  19. 19.
    E. Jacksimov, Fiz. Tekh. Poluprovodn., 11, No.1, 302 (1969).Google Scholar
  20. 20.
    J. F. Seely and E. G. Harris, Phys. Rev. A, 7, No.3, 1064 (1973).CrossRefADSGoogle Scholar
  21. 21.
    R. K. Osborn, Phys. Rev. A, 5, No.4, 1660 (1972).CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    R. Haupt and L. Wendler, Ann. Phys., Belgium, 2, No.233, 214 (1994).ADSGoogle Scholar
  23. 23.
    R. P. Feynmann and A. R. Hibbs, Quantum Mechanics and Path Integrals [Russian translation], Mir, Moscow (1968).Google Scholar
  24. 24.
    S. N. Klimin, E. P. Pokatilov, and V. M. Fomin, Phys. Status Solidi (b), 184, 373 (1994).Google Scholar
  25. 25.
    V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, Solid State Commun., 105, No.2, 113 (1998).CrossRefADSGoogle Scholar
  26. 26.
    V. M. Fomin, V. N. Gladilin, J. T. Devreese, E. P. Pokatilov, S. N. Balaban, and S. N. Klimin, Phys. Rev. B, 57, 4 (1998).CrossRefGoogle Scholar
  27. 27.
    O. Astafiev, V. Antonov, T. Kutsuwa, and S. Komiyama, Phys. Rev. B, 65, 085315 (2002).CrossRefADSGoogle Scholar
  28. 28.
    V. M. Fomin, V. N. Gladilin, S. N. Klimin, J. T. Devreese, P. M. Koenraad, J. H. Wolter, Phys. Rev. B, 61, 4 (2000).CrossRefGoogle Scholar
  29. 29.
    L. C. Fai, I. Nsangou, and V. B. Mborong, J. Cameroon Acad. Sci., 4, No.3, 255 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of DschangCameroon
  2. 2.Laboratoire des Proprietes Optiques des Materiaux et Applications, UMR CNRS 6136Universite d'AngersFrance

Personalised recommendations