Journal of Applied Spectroscopy

, Volume 72, Issue 4, pp 541–546 | Cite as

Electro- and Magneto-Optical Properties of Films of Polycomplexes of 4-Methacryloyloxy-(4′-Carboxy-3′-Oxy)Azobenzene with Metals

  • I. I. Davidenko
  • N. A. Davidenko
  • I. A. Savchenko
  • V. G. Syromyatnikov


The electrical conductivity, photoconductivity, and electrical and magneto-optical properties of the films of new polycomplexes of 4-methacryloyloxy-(4′-carboxy-3′-oxy)-azobenzene with nickel and cobalt have been investigated. The electrical conductivity and photoconductivity in the visible region of light are determined by the orientation effects of azobenzene groups as well as by generation and transfer of charge carriers between them. A change in the spatial orientation of photoinduced dipole moments of azobenzene groups in an external electric or magnetic field is attributed to the appearance of forces acting on electrically charged magnetic ions of a metal and that are rigidly connected with these groups.


metal-containing polymeric complexes azobenzene groups electrical conductivity photoconductivity electro-optical effect magneto-optical effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. B. Jung, M. Ozawa, T. Akasaka, O. Matoba, T. Shimura, K. Araki, and K. Kuroda, Photorefractive Effects, Materials, and Devices, TOPS, 87, 237–243 (2003).Google Scholar
  2. 2.
    J. C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J. F. Nicoud, J. Appl. Phys., 91, 1710–1712 (2002).CrossRefADSGoogle Scholar
  3. 3.
    K. Janus, K. Matczyszyn, J. Sworakowski, J. Biernat, and Z. Galewskii, Mol. Cryst. Liq. Cryst., 361, 143–148 (2001).Google Scholar
  4. 4.
    O. Yaroshchuk, A. Tereshchenko, Yu. Zakrevsky, and I. Shanski, Mol. Cryst. Liq. Cryst., 361, 187–192 (2001).Google Scholar
  5. 5.
    L. Andruzzi, A. Altomare, F. Ciardelli, R. Solaro, S. Hrilsted, and P. S. Ramanujam, Macromolecules, 32, 448–454 (1999).CrossRefGoogle Scholar
  6. 6.
    Z. Xueqin, R. Hongjun, C. Hongzheng, and W. Mang, Appl. Polym. Sci., 73, 1913–1920 (1999).Google Scholar
  7. 7.
    A. D. Pomogailo and G. I. Dzhardimaliev, Vysokomolek. Soed. A, 46, 437–453 (2004).Google Scholar
  8. 8.
    A. T. Ponomarenko and V. G. Shevchenko, Vysokomolek. Soed. A, 46, 461–471 (2004).Google Scholar
  9. 9.
    L. V. Nikitin, L. S. Mironova, and K. G. Kornev, Vysokomolek. Soed. A, 46, 498–509 (2004).Google Scholar
  10. 10.
    A. P. Filippov, Vysokomolek. Soed. A, 46, 527–560 (2004).Google Scholar
  11. 11.
    V. T. Kalinnikov, Yu. V. Rakitin, and V. M. Novotortsev, Usp. Khimii, 72, 1123–1140 (2003).Google Scholar
  12. 12.
    N. A. Davidenko, N. A. Derevyanko, A. A. Ishchenko, and V. A. Pavlov, Opt. Spektrosk., 91, 621–628 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • I. I. Davidenko
    • 1
  • N. A. Davidenko
    • 1
  • I. A. Savchenko
    • 1
  • V. G. Syromyatnikov
    • 1
  1. 1.Taras Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations