Journal of Applied Spectroscopy

, Volume 72, Issue 3, pp 306–315 | Cite as

Calculations of the Energies of the Excited States of Open-Shell Atoms in the Hartree-Fock Approximation

  • Yu. B. Malykhanov
  • S. A. Romanov


In the framework of the Roothaan-Hartree-Fock atomic theory, the solution of a many-electron problem is considered on the basis of the methods of minimizing a function of many variables. To implement this approach, expressions are obtained for the energy derivatives with respect to the elements of density matrices and the nonlinear parameters of atomic orbitals, that is, orbital exponents. Using the first- and second-order minimization methods, we performed optimization of the orbital exponents of Slater-type atomic orbitals for atoms and ions with several open shells. For them, energies that are close to the data of the numerical solution of the Hartree-Fock equations at a high accuracy of the virial ratio were determined. For a number of atoms the frequencies of the first dipole transitions were calculated, and the results were compared to the data obtained in calculation by the method of random phases and to experimental data.


frequency of transition energy atom ion open shell basis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Koga, H. Tatewaki, and A. Thakkar, J. Phys. Rev. A, 47, No.5, 4510–4512 (1993).CrossRefGoogle Scholar
  2. 2.
    T. Koga and A. Thakkar, J. Chem. Phys., 103, No.8, 3000–3005 (1995).CrossRefGoogle Scholar
  3. 3.
    C. F. Bunge, J. A. Barrientos, A. V. Bunge, and J. A. Cogordan, Phys. Rev. A, 46, No.7, 3691–3696 (1992).CrossRefPubMedGoogle Scholar
  4. 4.
    R. Centroducatte, E. V. R. de Castro, and F. E. Jorge, Can. J. Chem., 79, 121–123 (2001).CrossRefGoogle Scholar
  5. 5.
    Yu. B. Malykhanov, R. N. Pravosudov, and V. V. Meshkov, Zh. Strukt. Khim., 41, No.2, 217–228 (2000).Google Scholar
  6. 6.
    Yu. B. Malykhanov and V. V. Meshkov, Zh. Strukt. Khim., 43, No.1, 13–20 (2002).Google Scholar
  7. 7.
    Yu. B. Malykhanov and V. V. Meshkov, Tr. Srednevolzhsk. Mat. Obshch., 5, No.1, 78–87 (2003).Google Scholar
  8. 8.
    C. C. J. Roothaan, Rev. Mod. Phys., 32, No.2, 179–185 (1960).CrossRefGoogle Scholar
  9. 9.
    C. C. J. Roothaan and P. S. Bagus, Methods in Computational Physics, Vol. 2, Academic Press, New York (1963), pp. 47–94.Google Scholar
  10. 10.
    E. Clementi and C. Roetti, At. Data Nucl. Data Tables, 14, 177–178 (1974).Google Scholar
  11. 11.
    Yu. B. Malykhanov and R. M. Chadin, Zh. Prikl. Spektrosk., 71, No.3, 277–282 (2004); 72, No. 1, 5–12 (2005).Google Scholar
  12. 12.
    J. P. Olive, J. Chem. Phys., 51, No.10, 4340–4344 (1969).CrossRefGoogle Scholar
  13. 13.
    D. R. Hartree, The Calculation of Atomic Structures [Russian translation], Vysshaya Shkola, Moscow (1960), pp. 75–89.Google Scholar
  14. 14.
    N. I. Sobel'man, in: Introduction to the Theory of Atomic Spectra [in Russian], Fizmatgiz, Moscow (1963), pp. 239–250.Google Scholar
  15. 15.
    G. Malli and J. P. Olive, J. Chem. Phys., 43, No.3, 861–862 (1965).CrossRefGoogle Scholar
  16. 16.
    M. M. Mestechkin, Teor. Eksp. Khim., 12, No.6, 739–745 (1976).Google Scholar
  17. 17.
    F. Gill and W. Murray (Eds.), Numerical Methods for Constrained Optimization [Russian translation], Mir, Moscow (1977), pp. 83–110.Google Scholar
  18. 18.
    B. P. Pshenichnyi and Yu. M. Danilin, in: Numerical Methods in Extremal Problems [in Russian], Nauka, Moscow (1975), pp. 209–217.Google Scholar
  19. 19.
    S. Yu. Gusnin, G. A. Omel'yanov, G. V. Reznikov, et al., in: Minimization in Engineering Calculations on Computers [in Russian], Mashinostroenie, Moscow (1981), pp. 9–14.Google Scholar
  20. 20.
    H. Tatewaki, T. Koga, and A. J. Thakkar, J. Chem. Phys., 101, 4945–4948 (1994).CrossRefGoogle Scholar
  21. 21.
    H. Tatewaki and T. Koga, Chem. Phys. Lett., 228, 562–567 (1994).CrossRefGoogle Scholar
  22. 22.
    C. Frose-Fisher, Comp. Phys. Commun. J., 4, No.1, 107–16 (1972); 7, No. 4, 236 (1974).CrossRefGoogle Scholar
  23. 23.
    R. N. Pravosudov, Quantum-Mechanical Calculations of the Optical Properties of Atoms and Ions Based on the Hartree-Fock-Roothaan Method, Candidate Dissertation (in Physics and Mathematics), Saransk (1999), pp. 201–206.Google Scholar
  24. 24.
    A. R. Striganov and G. A. Odintsova, in: Tables of Spectral Lines and Ions: Handbook [in Russian], Energoizdat, Moscow (1982), pp. 25–260.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.M. E. Evsev'ev Mordovian State Pedagogical InstituteSaranskRussia

Personalised recommendations